当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspiration in light harvesting and catalysis
Nature Reviews Materials ( IF 79.8 ) Pub Date : 2020-08-07 , DOI: 10.1038/s41578-020-0222-0
Andrew H. Proppe , Yuguang C. Li , Alán Aspuru-Guzik , Curtis P. Berlinguette , Christopher J. Chang , Richard Cogdell , Abigail G. Doyle , Johannes Flick , Nathaniel M. Gabor , Rienk van Grondelle , Sharon Hammes-Schiffer , Shaffiq A. Jaffer , Shana O. Kelley , Mario Leclerc , Karl Leo , Thomas E. Mallouk , Prineha Narang , Gabriela S. Schlau-Cohen , Gregory D. Scholes , Aleksandra Vojvodic , Vivian Wing-Wah Yam , Jenny Y. Yang , Edward H. Sargent

Capturing and converting solar energy into fuels and feedstocks is a global challenge that spans numerous disciplines and fields of research. Billions of years of evolution have allowed natural organisms to hone strategies for harvesting light from the sun and storing energy in the form of carbon–carbon and carbon–hydrogen bonds. Photosynthetic antenna proteins capture solar photons and funnel photoexcitations to reaction centres with high yields, and enzymes catalyze multi-electron reactions, facilitating chemical transformations not yet efficiently implemented using artificially engineered catalysts. Researchers in renewable energy often look to nature to understand the mechanisms at work and, if possible, to explore their translation into artificial systems. Here, we review advances in bioinspiration across the fields of biological light harvesting and chemical energy conversion. We examine how multi-photon and multi-electron reactions in biology can inspire new methods in photoredox chemistry to achieve novel, selective and complex organic transformations; how carbonic-dehydrogenase-inspired design principles enable catalytic reactions such as the conversion of CO2 into useful products such as fuels; and how concepts from photosynthetic antenna complexes and reaction centres can benefit artificial light-harvesting materials. We then consider areas in which bioinspiration could enable advances in the rational design of molecules and materials, the expansion of the synthetic capabilities of catalysts and the valorization of molecular building blocks. We highlight the challenges that must be overcome to realize these advances and propose new directions that may use bioinspiration to achieve them.



中文翻译:

光吸收和催化中的生物启发

捕获太阳能并将其转化为燃料和原料是一项全球性挑战,涉及众多学科和研究领域。数十亿年的进化使自然生物能够磨练从阳光中收集光并以碳-碳和碳-氢键形式存储能量的策略。光合天线蛋白以高收率将太阳光子和漏斗光激发捕获到反应中心,酶催化多电子反应,从而促进了使用人工设计的催化剂尚未有效实施的化学转化。可再生能源的研究人员通常希望自然界了解工作机制,并在可能的情况下探索将其转化为人工系统的方法。这里,我们回顾了生物激发光和化学能转换领域中生物灵感的进展。我们研究生物学中的多光子和多电子反应如何激发光氧化还原化学的新方法,以实现新颖,选择性和复杂的有机转化。碳脱氢酶启发的设计原理如何实现催化反应,例如一氧化碳的转化2转化为有用的产品,例如燃料;以及光合作用天线复合体和反应中心的概念如何使人造光收集材料受益。然后,我们考虑生物启发可以在分子和材料的合理设计,催化剂合成能力的扩展以及分子构件的增值方面取得进展的领域。我们重点介绍了实现这些进步必须克服的挑战,并提出了可以利用生物灵感来实现它们的新方向。

更新日期:2020-08-08
down
wechat
bug