当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
b-Axis Phase Boundary Movement Induced (020) Plane Cracking in LiFePO4.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-08-07 , DOI: 10.1021/acsami.0c10838
Junjie Fu 1 , Kuan Wang 1 , Danmin Liu 1 , Zhenlu Zhang 2 , Manling Sui 1 , Pengfei Yan 1
Affiliation  

Phase boundary movement accomplishing reversible LiFePO4/FePO4 biphasic transition is a fundamental Li-ion intercalation/deintercalation mechanism for LiFePO4 cathode. Phase boundary energetically favors crack nucleation and propagation; thus, postmortem observation on cracks becomes a feasible approach to investigate the phase-transition behavior and the Li-ion diffusion mechanism. The previously observed (200) plane cracks facilitate the “domino” diffusion model. Herein, our microscopic observations reveal another type of cracks along the (020) planes in a commercial LiFePO4 cathode cycled at moderate rates (0.1C, 0.33C, and 1C). Such (020) plane cracks are more detrimental to electrochemical performance because they can cut off the Li-ion diffusion pathway, causing inactive segments of LiFePO4. The (020) plane cracks indicate the LiFePO4/FePO4 phase boundary is along the (020) plane and moving along the b-axis during battery operation, which is a typical bulk diffusion-limited Li-ion diffusion behavior. Our observations stress that large LiFePO4 primary particle (>200 nm) not only aggravates cracking degradation but also switches the Li-ion diffusion mode to a slow bulk diffusion mechanism, plunging the overall battery performance.

中文翻译:

LiFePO4中的b轴相边界移动引起(020)平面裂纹。

完成可逆LiFePO 4 / FePO 4双相转变的相界移动是LiFePO 4阴极的基本锂离子嵌入/脱嵌机制。相界在能量上有利于裂纹的形核和扩展。因此,事后观察裂纹成为研究相变行为和锂离子扩散机理的可行方法。先前观察到的(200)平面裂纹促进了“多米诺”扩散模型。在这里,我们的显微镜观察揭示了商用LiFePO 4中沿(020)平面的另一种类型的裂纹阴极以中等速率(0.1C,0.33C和1C)循环。这样的(020)平面裂纹对电化学性能更有害,因为它们会切断锂离子扩散途径,从而导致LiFePO 4的惰性链段。(020)平面裂纹表示LiFePO 4 / FePO 4相界沿电池运行期间的(020)平面并沿b轴移动,这是典型的体扩散受限的锂离子扩散行为。我们的观察结果强调,较大的LiFePO 4初级粒子(> 200 nm)不仅会加剧裂纹降解,还会将Li离子扩散模式切换为缓慢的整体扩散机制,从而降低了整体电池性能。
更新日期:2020-09-02
down
wechat
bug