当前位置: X-MOL 学术Z. Naturforschung A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: high-temperature and high-pressure study
Zeitschrift für Naturforschung A ( IF 1.8 ) Pub Date : 2020-08-07 , DOI: 10.1515/zna-2020-0155
YanJun Hao 1 , Lin Zhang 2 , Jun Zhu 1
Affiliation  

Abstract Using the projector augmented wave (PAW) within the Perdew, Burke, and Ernzerhof (PBE) form of generalized gradient approximation (GGA), We present a study of the electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh. We find that FM structure exhibits the largest Fe magnetic moment, which is in accordance with the experimental data and Fe magnetic moment for A-AFM and G-AFM phases, c-AFM, A’-AFM and Ort phases show lower Fe local magnetic moment. Our most stable structure is orthorhombic phase. This conclusion is supported by Zarkevich and Johnson, but contrary to the results of Aschauer et al., Kim et al. and Gruner et al. The obtained phase transition of Ort → c-AFM occurs at ca. 116.5 GPa and c-AFM to A’-AFM phase transition pressure is 119.0 GPa. The compressional, shear and average velocities as well as the bulk and shear moduli increase monotonically with increasing pressure. It is also found that thermal electronic contributions to specific heat are not negligible and contribution rate of electrons to the total thermal conductivity dominant at high temperature. At lower temperature, lattice thermal conductivity KL increases rapidly with the increasing pressure and KL has a moderate increase under pressure at higher temperature. Whereas, electronic thermal conductivity Ke is opposite. Most of the heat is carried by phonons with mean free paths ranging from 10 to 300 nm at 300 K.

中文翻译:

FeRh 的电子结构、相变、弹性、热力学和热电特性:高温高压研究

摘要 在广义梯度近似 (GGA) 的 Perdew、Burke 和 Ernzerhof (PBE) 形式中使用投影增强波 (PAW),我们研究了 FeRh 的电子结构、相变、弹性、热力学和热电特性。 . 我们发现FM结构表现出最大的Fe磁矩,这与A-AFM和G-AFM相的实验数据和Fe磁矩一致,c-AFM、A'-AFM和Ort相表现出较低的Fe局部磁矩片刻。我们最稳定的结构是正交相。该结论得到 Zarkevich 和 Johnson 的支持,但与 Aschauer 等人的结果相反,Kim 等人。和格鲁纳等人。获得的 Ort → c-AFM 的相变发生在大约。116.5 GPa 和 c-AFM 到 A'-AFM 的相变压力为 119.0 GPa。压缩的,剪切和平均速度以及体积和剪切模量随着压力的增加而单调增加。还发现热电子对比热的贡献不可忽略,并且电子对总热导率的贡献率在高温下占主导地位。在较低温度下,晶格热导率 KL 随着压力的增加而迅速增加,而 KL 在较高温度下的压力下会适度增加。而电子热导率Ke则相反。大部分热量由声子携带,声子在 300 K 下的平均自由程范围为 10 到 300 nm。还发现热电子对比热的贡献不可忽略,并且电子对总热导率的贡献率在高温下占主导地位。在较低温度下,晶格热导率 KL 随着压力的增加而迅速增加,而 KL 在较高温度下的压力下会适度增加。而电子热导率Ke则相反。大部分热量由声子携带,声子在 300 K 下的平均自由程范围为 10 到 300 nm。还发现热电子对比热的贡献不可忽略,并且电子对总热导率的贡献率在高温下占主导地位。在较低温度下,晶格热导率 KL 随着压力的增加而迅速增加,而 KL 在较高温度下的压力下会适度增加。而电子热导率Ke则相反。大部分热量由声子携带,声子在 300 K 下的平均自由程范围为 10 到 300 nm。
更新日期:2020-08-07
down
wechat
bug