当前位置: X-MOL 学术GCB Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Incorrect data sustain the claim of forest‐based bioenergy being more effective in climate change mitigation than forest conservation
Global Change Biology Bioenergy ( IF 5.9 ) Pub Date : 2020-08-07 , DOI: 10.1111/gcbb.12738
Torsten Welle 1 , Pierre L. Ibisch 2 , Jeanette S. Blumroeder 2 , Yvonne E.‐M. B. Bohr 1 , Loretta Leinen 1 , Tobias Wohlleben 3 , Knut Sturm 1
Affiliation  

The urgent need for effective solutions to climate change accelerates and upscales the debate on the ongoing role of forest ecosystems and the impact of forest‐based bioenergy on carbon sequestration. Numerous studies have already questioned the mitigation effectiveness of this option (e.g. Agostini, Giuntoli, & Boulamanti, 2014; Booth, 2018; Hudiburg, Law, Wirth, & Luyssaert, 2011; Leturcq, 2014; Searchinger et al., 2018; Ter‐Mikaelian, Colombo, & Chen, 2015). Nevertheless, wood industries and several researchers still claim that timber harvesting is an effective contribution to a reduction of carbon dioxide in the atmosphere. The recent Opinion piece by Schulze et al. (2020) represents another case, which has been criticized by Kun et al. (2020) for using an incorrect metric and by Booth, Mackey, and Young (2020) for being underpinned by invalid assumptions. Additionally, it is necessary to add that Schulze et al. (2020) base their findings on major errors in data use and calculations.

The authors suggest that the mitigation effect of managed forests ranges from 3.22 to 3.45 t CO2 equiv. ha−1 year−1, whereas unmanaged conservation forests would contribute only 0.37 t CO2 equiv. ha−1 year−1. Consequently, the regional mitigation potential of managed forests would be about 10 times higher in comparison to unused forests. The data used in the Opinion piece for calculations of unmanaged, strictly protected forests are based on only one repeated inventory that was conducted in the year 2010 in Hainich National Park (HNP), Germany (Nationalparkverwaltung Hainich (Hrsg.), 2012—actually cited as Hainich, 2015).

In HNP, past forest use as well as the progressive extension of the strictly protected areas resulted in a heterogeneous distribution of age classes. Established as late as 1997, some parts used to be a military training ground between 1935 and 1990. Whilst HNP comprises forest areas that have not been harvested for several decades and show a high density of old trees, younger stands prevail in other parts. A forest inventory in 2010 revealed a mean stock of living solid wood mass of 367.5 m3/ha, based on 1,421 sample points (Nationalparkverwaltung Hainich (Hrsg.), 2012, p.58). Compared to the previous inventory in 2000 (363.5 m3/ha based on 1,200 sample points), the stock increase of 0.4 m3 ha−1 year−1 was statistically not significant. However, the mean stock volume measured in 2010 was considerably influenced by low volumes of the additionally surveyed sample points which were located in early succession pioneer forest areas (Nationalparkverwaltung Hainich (Hrsg.), 2012, p.58). Taking into account only the 1,200 sample points which were used in the 2000 inventory, the mean stock in 2010 is 453 m3/ha, resulting in a mean stock increase of 90 m3/ha, or 9 m3 ha−1 year−1 (Nationalparkverwaltung Hainich (Hrsg.), 2012, p.58).

Schulze et al. (2020) report an average increment of 4 m3 ha−1 year−1 in unmanaged beech forests based on four different forest areas, including the incorrect increment data from HNP. Still, this average value was not used for the calculation, only the value from HNP. Considering the original increment value of 9 m3 ha−1 year−1 instead of 0.4 m3 ha−1 year−1, the corrected average value from three unmanaged beech forests and HNP would end up in 6.2 m3 ha−1 year−1.

Applying the original increment value of HNP of 9 m3 ha−1 year−1 and recalculating the carbon sequestration potential according to the method of Schulze et al., unmanaged protected forests would sequester 8.25 t CO2 equiv. ha−1 year−1. Then, their climate change mitigation potential would be about 2.5 times higher compared to bioenergetically used forests. Applying the average increment value of 6.2 m3 ha−1 year−1, the mitigation effect of unmanaged forests would be 5.68 t CO2 equiv. ha−1 year−1, still an increase of 64%, respectively 76%, compared to managed forests (Schulze et al. stated 3.22–3.45 t CO2 equiv. ha−1 year−1). Even using the average increment value of 4 m3 ha−1 year−1, which Schulze et al. published in table 1, the carbon sequestration would be 3.67 t CO2 equiv. ha−1 year−1 compared to 3.22–3.45 t CO2 equiv. ha−1 year−1.

The only effective pathway towards climate change mitigation is to stop burning carbonaceous material as much and as fast as possible and to strengthen the natural carbon sinks instead of destroying them. In this context, burning of fresh stemwood that both increases the atmospheric greenhouse gas concentration and reduces functional natural carbon stocks as well as sinks is not reasonable.

REFERENCES

    REFERENCES
  • Agostini, A., Giuntoli, J., & Boulamanti, A. (2014). Carbon accounting of forest bioenergy: Conclusions and recommendations from a critical literature review. European Union, 978‐92‐79‐25101‐6 (print), 978–92‐79‐25100‐9 (pdf). Retrieved from https://publications.jrc.ec.europa.eu/repository/bitstream/JRC70663/eur25354en_online.pdf
    Google Scholar
  • Booth, M. S. (2018). Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy. Environmental Research Letters, 13, 035001. https://doi.org/10.1088/1748‐9326/aaac88
    Crossref Web of Science®Google Scholar
  • Booth, M. S., Mackey, B., & Young, V. (2020). It's time to stop pretending burning forest biomass is carbon neutral. GCB Bioenergy. https://doi.org/10.1111/gcbb.12716
    Wiley Online Library Web of Science®Google Scholar
  • Hudiburg, T. W., Law, B. E., Wirth, C., & Luyssaert, S. (2011). Regional carbon dioxide implications of forest bioenergy production. Nature Climate Change, 1, 419423. https://doi.org/10.1038/nclimate1264
    Crossref CAS Web of Science®Google Scholar
  • Kun, Z., DellaSala, D., Keith, H. C., Cormos, C., Mercer, B., Moomaw, W. R., & Wiezik, M. (2020). Recognising the importance of unmanaged forests to mitigate climate change. GCB Bioenergy. https://doi.org/10.1111/gcbb.12714
    Wiley Online Library Web of Science®Google Scholar
  • Leturcq, P. (2014). Wood preservation (carbon sequestration) or wood burning (fossil‐fuel substitution), which is better for mitigating climate change? Annals of Forest Science, 71, 117124. https://doi.org/10.1007/s13595‐013‐0269‐9
    Crossref Web of Science®Google Scholar
  • Nationalparkverwaltung Hainich (Hrsg.). (2012). Waldentwicklung im Nationalpark Hainich – Ergebnisse der ersten Wiederholung der Waldbiotopkartierung, Waldinventur und der Aufnahme der vegetationskundlichen Dauerbeobachtungsflächen. Schriftenreihe Erforschen, Band 3, Bad Langensalza. ISBN: 978‐3‐9817221‐2‐3. Retrieved from https://www.nationalparkhainich.de/de/service/veroeffentlichungen/fachpublikationen.html
    Google Scholar
  • Schulze, E. D., Sierra, C. A., Egenolf, V., Woerdehoff, R., Irsllinger, R., Baldamus, C., … Spellmann, H. (2020). The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy, 12, 186197. https://doi.org/10.1111/gcbb.12672
    Wiley Online Library CAS Web of Science®Google Scholar
  • Searchinger, T. D., Beringer, T., Holtsmark, B., Kammen, D. M., Lambin, E. F., Lucht, W., … van Ypersele, J. P. (2018). Europe's renewable energy directive poised to harm global forests. Nature Communications, 9, 3741. https://doi.org/10.1038/s41467‐018‐06175‐4
    Crossref PubMed Web of Science®Google Scholar
  • Ter‐Mikaelian, M. T., Colombo, S. J., & Chen, J. (2015). The burning question: Does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting. Journal of Forestry, 113, 5768. https://doi.org/10.5849/jof.14‐016
    Crossref Web of Science®Google Scholar


中文翻译:

错误的数据支持了基于森林的生物能源在减轻气候变化方面比森林保护更有效的主张。

迫切需要有效解决气候变化的解决方案,从而加速并扩大了关于森林生态系统的持续作用以及基于森林的生物能源对固碳的影响的辩论。众多研究已经对该方案的缓解效果提出了质疑(例如Agostini,Giuntoli和Boulamanti,  2014年; Booth,  2018年; Hudiburg,Law,Wirth,&Luyssaert,  2011年; Leturcq,  2014年; Searchinger等人,2018年; Ter- Mikaelian,Colombo和Chen,  2015年)。然而,木材工业和一些研究人员仍然声称,木材采伐是减少大气中二氧化碳的有效手段。Schulze等人最近发表的观点文章。(2020年)代表了另一种情况,受到Kun等人的批评。(2020)表示使用了错误的指标,而Booth,Mackey和Young(2020)则使用了无效的假设。另外,有必要添加Schulze等。(2020)他们的发现基于数据使用和计算中的重大错误。

作者认为,人工林的缓解效果为3.22至3.45 t CO 2当量。ha - 1 年-1,而未管理的保护林仅贡献0.37 t CO 2当量。ha - 1 年-1。因此,与未使用的森林相比,管理森林的区域缓解潜力大约高10倍。意见书中用于计算未经严格管理的森林的数据仅基于2010年在德国海尼希国家公园(HNP)进行的一次重复盘点(Nationalparkverwaltung Hainich(Hrsg。),2012年-实际引用)如海尼希(Hainich),2015年)。

在HNP中,过去的森林使用以及严格保护区的逐步扩展导致年龄层的分布不均。该基地成立于1997年,有些地方以前是1935年至1990年之间的军事训练场。虽然HNP包括几十年来未被采伐的森林地区,并且树龄高,但其他地区则占主导地位。根据1,421个采样点,2010年的森林资源清查显示出平均活木材质量为367.5 m 3 / ha(Nationalparkverwaltung Hainich(Hrsg。),2012年,第58页)。与2000年的先前库存相比(基于1,200个采样点,为363.5 m 3 / ha),库存增加了0.4 m 3  ha - 1 年-1在统计学上不显着。但是,2010年测得的平均蓄积量很大程度上受位于早期演替先驱森林地区的少量额外采样点的影响(Nationalparkverwaltung Hainich(Hrsg。),2012,第58页)。仅考虑2000年库存中使用的1200个采样点,2010年的平均库存量为453 m 3 / ha,导致平均库存量增加90 m 3 / ha或9 m 3  ha - 1 年- 1(NationalparkverwaltungHainich(Hrsg。),2012,p.58)。

Schulze等。(2020)报告基于四个不同的森林面积,其中包括来自HNP的不正确的增量数据,未管理的山毛榉森林的平均增量为4 m 3  ha - 1 年-1。但是,该平均值并未用于计算,仅使用了来自HNP的值。考虑到原始增量值为9 m 3  ha - 1 年-1而不是0.4 m 3  ha - 1 年-1,来自三个未经管理的山毛榉森林和HNP的校正平均值将最终为6.2 m 3  ha - 1 年- 1

如果采用原始的HNP增量值9 m 3  ha - 1 年-1,并根据Schulze等人的方法重新计算碳固存潜力,那么未管理的保护林将固存8.25 t CO 2当量。ha - 1 年-1。然后,与使用生物能源的森林相比,其缓解气候变化的潜力将高出约2.5倍。应用6.2 m 3  ha -1  year -1的平均增量值,未管理森林的缓解效果将为5.68 t CO 2当量。ha - 1 年-1与受管理的森林相比(Schulze等人指出,当量CO 2当量为3.22–3.45 t ha - 1 年-1)仍然分别增加了64%和76%。即使使用4 m 3  ha -1  year -1的平均增量值,Schulze等人也认为。表1中公布的碳固存量为3.67 t CO 2当量。ha - 1 年-1,而CO 2当量为3.22–3.45 t 。ha - 1 年-1

缓解气候变化的唯一有效途径是,尽可能快地停止燃烧含碳物质,并加强自然碳汇,而不是破坏它们。在这种情况下,燃烧既增加大气温室气体浓度又减少功能性天然碳储量和汇的新鲜原木是不合理的。

参考资料

    参考资料
  • Agostini,A.Giuntoli,J .和Boulamanti,A.2014年)。森林生物能源的碳核算:关键文献综述的结论和建议。欧盟,978-92-79-2510-6(印刷),978-92-79-25100-9(pdf)。取自https://publications.jrc.ec.europa.eu/repository/bitstream/JRC70663/eur25354en_online.pdf
    谷歌学术
  • Booth, M. S. (2018). Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy. Environmental Research Letters, 13, 035001. https://doi.org/10.1088/1748‐9326/aaac88
    Crossref Web of Science®Google Scholar
  • Booth, M. S., Mackey, B., & Young, V. (2020). It's time to stop pretending burning forest biomass is carbon neutral. GCB Bioenergy. https://doi.org/10.1111/gcbb.12716
    Wiley Online Library Web of Science®Google Scholar
  • Hudiburg, T. W., Law, B. E., Wirth, C., & Luyssaert, S. (2011). Regional carbon dioxide implications of forest bioenergy production. Nature Climate Change, 1, 419423. https://doi.org/10.1038/nclimate1264
    Crossref CAS Web of Science®Google Scholar
  • Kun, Z., DellaSala, D., Keith, H. C., Cormos, C., Mercer, B., Moomaw, W. R., & Wiezik, M. (2020). Recognising the importance of unmanaged forests to mitigate climate change. GCB Bioenergy. https://doi.org/10.1111/gcbb.12714
    Wiley Online Library Web of Science®Google Scholar
  • Leturcq, P. (2014). Wood preservation (carbon sequestration) or wood burning (fossil‐fuel substitution), which is better for mitigating climate change? Annals of Forest Science, 71, 117124. https://doi.org/10.1007/s13595‐013‐0269‐9
    Crossref Web of Science®Google Scholar
  • Nationalparkverwaltung Hainich (Hrsg.). (2012). Waldentwicklung im Nationalpark Hainich – Ergebnisse der ersten Wiederholung der Waldbiotopkartierung, Waldinventur und der Aufnahme der vegetationskundlichen Dauerbeobachtungsflächen. Schriftenreihe Erforschen, Band 3, Bad Langensalza. ISBN: 978‐3‐9817221‐2‐3. Retrieved from https://www.nationalparkhainich.de/de/service/veroeffentlichungen/fachpublikationen.html
    Google Scholar
  • Schulze, E. D., Sierra, C. A., Egenolf, V., Woerdehoff, R., Irsllinger, R., Baldamus, C., … Spellmann, H. (2020). The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy, 12, 186197. https://doi.org/10.1111/gcbb.12672
    Wiley Online Library CAS Web of Science®Google Scholar
  • Searchinger, T. D., Beringer, T., Holtsmark, B., Kammen, D. M., Lambin, E. F., Lucht, W., … van Ypersele, J. P. (2018). Europe's renewable energy directive poised to harm global forests. Nature Communications, 9, 3741. https://doi.org/10.1038/s41467‐018‐06175‐4
    Crossref PubMed Web of Science®Google Scholar
  • Ter‐Mikaelian, M. T., Colombo, S. J., & Chen, J. (2015). The burning question: Does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting. Journal of Forestry, 113, 5768. https://doi.org/10.5849/jof.14‐016
    Crossref Web of Science®Google Scholar
更新日期:2020-08-07
down
wechat
bug