当前位置: X-MOL 学术Struct. Control Health Monit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seismic assessment of earthquake‐resilient tall pier bridges using rocking foundation retrofitted with various energy dissipation devices
Structural Control and Health Monitoring ( IF 4.6 ) Pub Date : 2020-08-06 , DOI: 10.1002/stc.2625
Xu Chen 1, 2, 3, 4 , Chunxiang Li 4
Affiliation  

While conventional seismic isolation bearings are usually inefficient for bridges with tall piers, rocking foundation is a promising approach mitigating their seismic demands and improving post‐earthquake resilience. However, excessive tilt angle might occur at rocking interface and lead to overturning during strong earthquake excitations. This paper investigates the efficiency of various energy dissipation devices in improving the seismic performance of rocking foundations employed in tall pier bridge systems. The devices considered in this study include yielding steel cable (YSCs), viscous dampers (VDs), and super‐elastic shape memory alloy cables (SMAs), and they are implemented out of the pier columns for convenience of replacing if damaged during earthquakes. The results of nonlinear time history analysis show that all these devices are capable of suppressing the seismic responses of tilt angle at rocking interface; however, the seismic vulnerability of piers is increased as well, since these devices impose extra demands on columns. Consequently, the parameters of energy dissipation devices should be carefully determined in engineering practice, achieving balance between the seismic performance of tilt angle at rocking interface and nonlinear demand of pier columns. Note that the maximum demands of columns are determined by the design parameters of devices, which could improve the seismic resilience of tall pier bridges and facilitate the post‐earthquake rescue operations.

中文翻译:

装有各种耗能装置的摇摆基础对高弹力高墩桥的地震评估

虽然传统的隔震轴承通常对于高墩桥而言效率低下,但晃动地基是减轻其地震需求并提高震后复原力的一种有前途的方法。但是,在强烈的地震激发过程中,摇摆界面可能会出现过大的倾斜角,并导致倾覆。本文研究了各种消能装置在提高高墩桥系统中使用的摇摆基础的抗震性能方面的效率。本研究中考虑的设备包括屈服钢缆(YSC),粘性阻尼器(VD)和超弹性形状记忆合金电缆(SMAs),它们在墩柱外实现,以便在地震中损坏时方便更换。非线性时程分析结果表明,所有这些装置都能够抑制摇摆界面倾斜角的地震响应。然而,由于这些装置对立柱提出了额外的要求,因此墩的地震脆弱性也增加了。因此,在工程实践中应仔细确定耗能装置的参数,以实现摇摆界面的倾角抗震性能与墩柱的非线性需求之间的平衡。请注意,圆柱的最大需求由设备的设计参数确定,这可以提高高墩桥的抗震能力,并有助于地震后的救援行动。由于这些设备对立柱提出了额外的要求,因此码头的地震脆弱性也随之增加。因此,在工程实践中应仔细确定耗能装置的参数,以实现摇摆界面的倾角抗震性能与墩柱的非线性需求之间的平衡。请注意,圆柱的最大需求由设备的设计参数确定,这可以提高高墩桥的抗震能力,并有助于地震后的救援行动。由于这些设备对立柱提出了额外的要求,因此码头的地震脆弱性也随之增加。因此,在工程实践中应仔细确定耗能装置的参数,以达到摇摆界面的倾角抗震性能与墩柱的非线性需求之间的平衡。请注意,圆柱的最大需求由设备的设计参数确定,这可以提高高墩桥的抗震能力,并有助于地震后的救援行动。
更新日期:2020-10-05
down
wechat
bug