当前位置: X-MOL 学术Comput. Biol. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D numerical investigation of the fluid mechanics in a partially liquefied vitreous humor due to saccadic eye movement.
Computers in Biology and Medicine ( IF 7.0 ) Pub Date : 2020-08-06 , DOI: 10.1016/j.compbiomed.2020.103955
Javad Bayat 1 , Homayoun Emdad 1 , Omid Abouali 1
Affiliation  

Partial vitreous liquefaction (PVL) is a common physical and biochemical degenerative change in the vitreous body in which the liquid component becomes separated from collagen fiber network and this might form the pocket of liquefaction known as lacuna. The main objective of this research is to investigate how the saccade movements influence flow dynamics of the PVL. A three-dimensional model of the vitreous cavity is subjected to saccadic movement and the numerical simulations for various saccade amplitudes and volume fractions are performed. We consider concentric and eccentric configurations of the PVL with the initial spherical shape inside a spherical cavity. In this paper, a specific 3D numerical solver is developed to capture the interface effects and dynamic characteristics of a two-phase viscoelastic-Newtonian fluid flow by using the OpenFOAM CFD. The code is based on a set of time-dependent non-linear partial differential equations (PDE) such as continuity, momentum and constitutive relation for polymeric stresses tensor. The finite volume method with a modified volume-of-fluid model and dynamic mesh technique are used to solve PDEs. Firstly, the validity of the present numerical model was verified by comparing the obtained results with the analytical solutions which demonstrated remarkable agreement. Then, the time- and space-dependent velocity field, shear stress and normal stress distributions were computed and how the PVL responds to the saccadic motions was discussed.



中文翻译:

3D数值研究由于眼球运动导致部分液化的玻璃体液中的流体力学。

玻璃体部分液化(PVL)是玻璃体中常见的物理和生化变性变化,其中液体成分与胶原纤维网络分离,这可能形成被称为腔隙的液化袋。这项研究的主要目的是研究扫视运动如何影响PVL的流动动力学。对玻璃体腔的三维模型进行扫视运动,并对各种扫视幅度和体积分数进行数值模拟。我们考虑球腔内初始球形的PVL的同心和偏心配置。在本文中,通过使用OpenFOAM CFD,开发了一种特殊的3D数值求解器来捕获两相粘弹性牛顿流体流的界面效应和动力学特性。该代码基于一组随时间变化的非线性偏微分方程(PDE),例如聚合应力张量的连续性,动量和本构关系。使用修正的流体体积模型和动态网格技术的有限体积方法来求解PDE。首先,通过将所得结果与解析方案进行比较,验证了该数值模型的有效性。然后,计算了随时间和空间变化的速度场,切应力和正应力分布,并讨论了PVL如何响应眼跳运动。该代码基于一组随时间变化的非线性偏微分方程(PDE),例如聚合应力张量的连续性,动量和本构关系。使用修正的流体体积模型和动态网格技术的有限体积方法来求解PDE。首先,通过将所得结果与解析方法进行比较,验证了该数值模型的有效性。然后,计算了随时间和空间变化的速度场,切应力和正应力分布,并讨论了PVL如何响应眼跳运动。该代码基于一组随时间变化的非线性偏微分方程(PDE),例如聚合应力张量的连续性,动量和本构关系。使用修正后的流体体积模型和动态网格技术的有限体积方法求解PDE。首先,通过将所得结果与解析方案进行比较,验证了该数值模型的有效性。然后,计算了随时间和空间变化的速度场,切应力和正应力分布,并讨论了PVL如何响应眼跳运动。使用修正的流体体积模型和动态网格技术的有限体积方法来求解PDE。首先,通过将所得结果与解析方法进行比较,验证了该数值模型的有效性。然后,计算了随时间和空间变化的速度场,切应力和正应力分布,并讨论了PVL如何响应眼跳运动。使用修正的流体体积模型和动态网格技术的有限体积方法来求解PDE。首先,通过将所得结果与解析方案进行比较,验证了该数值模型的有效性。然后,计算了随时间和空间变化的速度场,切应力和正应力分布,并讨论了PVL如何响应眼跳运动。

更新日期:2020-08-31
down
wechat
bug