当前位置: X-MOL 学术J. Therm. Anal. Calorim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal analysis of Casson micropolar nanofluid flow over a permeable curved stretching surface under the stagnation region
Journal of Thermal Analysis and Calorimetry ( IF 3.0 ) Pub Date : 2020-08-06 , DOI: 10.1007/s10973-020-10127-w
Mohammad Amjad , Iffat Zehra , S. Nadeem , Nadeem Abbas

We consider a curved surface upon which the Casson micropolar nanofluid flow is discharged to understand the behavior of such flow and heat progression. The non-Newtonian fluid flow is controlled with the introduction of a magnetic force which is directed against the flow to alter the moment of flow. An increase in the numerical value of modified Hartmann number slows down the flow by adding discharge against the flow. Lorentz force produced by increasing the curve of the channel suppresses the flow velocity. The micropolar parameter reduces the drag and helps in increasing the fluid flow. Mathematical modeling of the problem is done by taking into account the conventional assumptions taken in fluid flow theories. The modeled equations are simplified by considering similar transformation variables used in the contemporary literature. Numerical result is obtained by using bvp4c solver used in MATLAB by allowing the acceptable tolerance level at 1e−4. Various tests are carried out to choose the best match of the parametric values which help in achieving the defined boundary conditions. The output of the various solutions is plotted under varying values of different parameters, and henceforth the changes occurred are noted and discussed. The behavior of velocity, microrotational, temperature and concentration profiles is observed by comparing the graphical and tabular values. The role of different physical quantities under different parametric assumptions for stretching/shrinking channel is also taken into account and highlighted.



中文翻译:

停滞区下可渗透弯曲拉伸表面上的Casson微极性纳米流体流动的热分析

我们考虑在曲面上排放了卡森微极性纳米流体,以了解这种流动和热进程的行为。通过引入磁力来控制非牛顿流体的流动,该磁力直接逆着流动改变流动力矩。修正的哈特曼数的数值增加会通过增加流量增加流量来减慢流量。通过增加通道的曲线而产生的洛伦兹力会抑制流速。微极性参数可减少阻力,并有助于增加流体流量。该问题的数学建模是通过考虑流体流动理论中的常规假设来完成的。通过考虑当代文献中使用的相似变换变量,可以简化建模方程。通过使用MATLAB中使用的bvp4c求解器,并在1e-4处允许可接受的公差水平,可以得到数值结果。进行了各种测试以选择参数值的最佳匹配,这有助于实现定义的边界条件。在不同参数的不同值下绘制各种解决方案的输出,此后记录并讨论发生的变化。通过比较图形值和表格值,可以观察到速度,微旋转,温度和浓度曲线的行为。还考虑并强调了不同物理量在不同参数假设下对拉伸/收缩通道的作用。进行了各种测试以选择参数值的最佳匹配,这有助于实现定义的边界条件。在不同参数的不同值下绘制各种解决方案的输出,此后记录并讨论发生的变化。通过比较图形值和表格值,可以观察到速度,微旋转,温度和浓度曲线的行为。还考虑并强调了不同物理量在不同参数假设下对拉伸/收缩通道的作用。进行了各种测试以选择参数值的最佳匹配,这有助于实现定义的边界条件。在不同参数的不同值下绘制各种解决方案的输出,此后记录并讨论发生的变化。通过比较图形值和表格值,可以观察到速度,微旋转,温度和浓度曲线的行为。还考虑并强调了不同物理量在不同参数假设下对拉伸/收缩通道的作用。通过比较图形值和表格值,可以观察到微旋转,温度和浓度曲线。还考虑并强调了不同物理量在不同参数假设下对拉伸/收缩通道的作用。通过比较图形值和表格值,可以观察到微旋转,温度和浓度曲线。还考虑并强调了不同物理量在不同参数假设下对拉伸/收缩通道的作用。

更新日期:2020-08-06
down
wechat
bug