当前位置: X-MOL 学术Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on Solidification Structure Evolution of Direct-Chill Casting High Purity Copper Billet Using Cellular Automaton-Finite Element Method
Metals ( IF 2.9 ) Pub Date : 2020-08-05 , DOI: 10.3390/met10081052
Yonghui Jia , Dazhi Zhao , Chunyu Li , Lei Bao , Qichi Le , Hang Wang , Xuan Wang

A heat transfer model and a cellular Automation-Finite Element (CAFE) coupling model were established to analyze the solid/liquid (S/L) interface and solidification structure evolution of high purity copper Direct-chill (DC) casting billet under different casting conditions. The simulation and actual experimental results of liquid sump shape and solidification structure were first compared to verify the accuracy of the model. It is proved that the model is effective for simulating the solidification structure of the actual DC casting high purity copper billet. After that, the model was used to predict the solidification structure under different casting temperatures, casting speeds, and heat transfer coefficients. It is shown that, with the increase of casting temperature, the grain size decreases first and then increases. There is a compromise between grain size and its uniformity, and the grain size is more uniform at higher casting temperature. With the increase of casting speed, the depth of liquid sump and the height of the S/L interface increase, but the total grain number of the billet cross-section decreases gradually. As the heat transfer coefficient increases, the depth of the casting liquid sump becomes shallow, but the height of the solid-liquid interface increases and the grain size increases gradually. For the preparation of high purity copper billets with large cross-sectional dimensions by DC casting, a fine solidified structure could be obtained by appropriately reducing the casting speed and cooling intensity.

中文翻译:

基于元胞自动机有限元法的直冷铸造高纯铜坯凝固组织演变研究

建立了传热模型和蜂窝自动有限元(CAFE)耦合模型,以分析不同铸造条件下高纯铜直冷(DC)铸坯的固/液(S / L)界面和凝固组织演变。首先比较了水槽形状和凝固结构的模拟和实际实验结果,以验证模型的准确性。实践证明,该模型对模拟实际直流铸造高纯铜坯的凝固组织是有效的。之后,该模型用于预测不同铸造温度,铸造速度和传热系数下的凝固组织。结果表明,随着铸造温度的升高,晶粒尺寸先减小然后增大。晶粒尺寸及其均匀性之间存在折衷,并且在较高的铸造温度下晶粒尺寸更均匀。随着铸造速度的增加,贮液槽的深度和S / L界面的高度增加,但钢坯横截面的总晶粒数逐渐减少。随着传热系数的增加,铸造液池的深度变浅,但固液界面的高度增加,并且晶粒尺寸逐渐增大。为了通过DC铸造制备具有大截面尺寸的高纯度铜坯,可以通过适当降低铸造速度和冷却强度来获得精细的凝固组织。液槽的深度和S / L界面的高度增加,但钢坯横截面的总晶粒数逐渐减少。随着传热系数的增加,铸造液池的深度变浅,但是固液界面的高度增加,并且晶粒尺寸逐渐增大。为了通过DC铸造制备具有大截面尺寸的高纯度铜坯,可以通过适当降低铸造速度和冷却强度来获得精细的凝固组织。液槽的深度和S / L界面的高度增加,但钢坯横截面的总晶粒数逐渐减少。随着传热系数的增加,铸造液池的深度变浅,但固液界面的高度增加,并且晶粒尺寸逐渐增大。为了通过DC铸造制备具有大横截面尺寸的高纯度铜坯,可以通过适当降低铸造速度和冷却强度来获得精细的凝固组织。但是固液界面的高度增加,晶粒尺寸逐渐增加。为了通过DC铸造制备具有大截面尺寸的高纯度铜坯,可以通过适当降低铸造速度和冷却强度来获得精细的凝固组织。但是固液界面的高度增加,晶粒尺寸逐渐增加。为了通过DC铸造制备具有大截面尺寸的高纯度铜坯,可以通过适当降低铸造速度和冷却强度来获得精细的凝固组织。
更新日期:2020-08-05
down
wechat
bug