当前位置: X-MOL 学术Plant Breed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in genomics‐assisted breeding of brown planthopper (Nilaparvata lugens) resistance in rice (Oryza sativa)
Plant Breeding ( IF 1.5 ) Pub Date : 2020-08-05 , DOI: 10.1111/pbr.12851
Kishor Kumar 1, 2 , Pavneet Kaur 1 , Amit Kishore 3 , Yogesh Vikal 1 , Kuldeep Singh 1, 4 , Kumari Neelam 1
Affiliation  

Brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive insects that impair rice productivity per year. Till to date, 38 BPH resistance loci have been mapped from cultivated and wild species of rice. Of 38 resistance genes, eight genes (Bph14, Bph3, Bph26, bph29, Bph18, Bph6, Bph32 and Bph9) were positionally cloned. Four genes (Bph14, Bph26, Bph18 and Bph9) encode a typical CC‐NBS‐LRR domain‐containing protein. The Bph3 encodes a cluster of three Lectin Receptor Kinase genes (OsLecRK1‐3) that confer broad‐spectrum resistance. Numerous other genes including WRKY, MYB, DELLA, OsGID1, CYP71A1, mitogen‐activated protein kinase and micro RNAs have been functionally characterized that mediate resistance response to BPH. The comparative gene expression profiling, transcriptomics, proteomics and metabolomics studies have also accelerated the resistance breeding programme. In this review, we comprehensively updated the advances made in the identification of the BPH resistance genes and their functional validation to understand the molecular basis of host–BPH interaction. We also discuss the potential utility of the cutting‐edge genomics tools for breeding BPH resistance cultivars.

中文翻译:

基因组学辅助水稻抗褐飞虱(Nilaparvata lugens)育种的最新进展

褐飞虱(Blachhopperhopper,BPH),褐飞虱Nilaparvata lugens,Stål)是破坏性最大的害虫之一,每年都会危害水稻的生产力。迄今为止,已经从水稻的栽培品种和野生品种中绘制了38个BPH抗性基因座。在38个抗性基因中,定位克隆了八个基因(Bph14,Bph3,Bph26,bph29,Bph18,Bph6,Bph32Bph9)。四个基因(Bph14,Bph26,Bph18Bph9)编码典型的CC-NBS-LRR结构域蛋白。所述Bph3编码三个凝集素受体激酶基因(簇OsLecRK1-3)赋予广谱抗性。许多其他基因,包括WRKYMYBDELLAOsGID1CYP71A1,丝裂原激活的蛋白激酶和微小RNA的功能已被表征为介导对BPH的抗性反应。比较基因表达谱,转录组学,蛋白质组学和代谢组学研究也加快了抗性育种计划。在这篇综述中,我们全面更新了BPH抗性基因鉴定及其功能验证方面的进展,以了解宿主与BPH相互作用的分子基础。我们还将讨论尖端基因组学工具在育种BPH抗性品种中的潜在用途。
更新日期:2020-08-05
down
wechat
bug