当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An enzyme free detection of L-Glutamic acid using deposited CuO.GdO nanospikes on a flat glassy carbon electrode
Surfaces and Interfaces ( IF 5.7 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.surfin.2020.100617
Mohammed M. Rahman , Mohammad Musarraf Hussain , Abdullah M. Asiri , K.A. Alamry , M.A. Hasnat

Abstract Here, copper oxide doped gadolinium oxide nanospikes (CuO.GdO NSs) were prepared by hydrothermal process at low temperature in an alkaline phase. CuO.GdO NSs were characterized by conventional techniques, for example Fourier Transform Infrared Spectroscopy (FTIR), UV–visible Spectroscopy (UV–visible), powder X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM) equipped with X-ray electron dispersive spectroscopy (XEDS), and X-ray photoelectron spectroscopy (XPS). A sensitive and selective L-Glutamic acid sensor was developed with deposition of a thin-layer of doped NSs onto a glassy carbon electrode (GCE, surface area = 0.0316 cm2) by using coating 5% Nafion binder. Enhanced electrochemical performances such as higher sensitivity, lower limit of detection, linear dynamic range, and long-term stability of fabricated L-Glutamic acid sensor were achieved by a reliable current-voltage system. Calibration curve was found linear (R2 = 0.9982) over a wide range of L-Glutamic acid concentration (100.0 pM ~100.0 mM). Based on SNR ~3, sensitivity and limit of detection of sensor were calculated as sensitivity (569.62 μAnM−1cm−2), and LOD (166.67 pM) respectively. This expected CuO.GdO NSs/Nafion/GCE sensor probe is used for the real sample analysis (Human and rabbit serum) and found acceptable results. This proposed electrochemical approach can be a pioneer sensor development in enzyme less sensor improvement for assessment of bio-molecules in health care and biomedical fields in broad scales.

中文翻译:

在平板玻璃碳电极上使用沉积的 CuO.GdO 纳米尖峰对 L-谷氨酸进行无酶检测

摘要 在这里,在碱性相中,通过低温水热法制备了氧化铜掺杂的氧化钆纳米尖峰(CuO.GdO NSs)。CuO.GdO NSs 通过常规技术进行表征,例如傅里叶变换红外光谱 (FTIR)、紫外-可见光谱 (UV-visible)、粉末 X 射线衍射 (XRD)、场发射扫描电子显微镜 (FESEM) X 射线电子色散谱 (XEDS) 和 X 射线光电子能谱 (XPS)。通过使用涂层 5% Nafion 粘合剂将掺杂 NSs 的薄层沉积到玻璃碳电极(GCE,表面积 = 0.0316 cm2)上,开发了一种灵敏且选择性的 L-谷氨酸传感器。增强的电化学性能,例如更高的灵敏度、检测下限、线性动态范围、通过可靠的电流-电压系统实现了制造的 L-谷氨酸传感器的长期稳定性。发现校准曲线在大范围的 L-谷氨酸浓度 (100.0 pM ~100.0 mM) 内呈线性 (R2 = 0.9982)。基于 SNR ~3,传感器的灵敏度和检测限分别计算为灵敏度 (569.62 μAnM-1cm-2) 和 LOD (166.67 pM)。这种预期的 CuO.GdO NSs/Nafion/GCE 传感器探针用于实际样品分析(人和兔血清)并发现可接受的结果。这种提出的电化学方法可以成为无酶传感器改进的先驱传感器开发,用于在广泛的范围内评估医疗保健和生物医学领域的生物分子。9982) 在很宽的 L-谷氨酸浓度范围内 (100.0 pM ~100.0 mM)。基于 SNR ~3,传感器的灵敏度和检测限分别计算为灵敏度 (569.62 μAnM-1cm-2) 和 LOD (166.67 pM)。这种预期的 CuO.GdO NSs/Nafion/GCE 传感器探针用于实际样品分析(人和兔血清)并发现可接受的结果。这种提出的电化学方法可以成为无酶传感器改进的先驱传感器开发,用于在广泛的范围内评估医疗保健和生物医学领域的生物分子。9982) 在很宽的 L-谷氨酸浓度范围内 (100.0 pM ~100.0 mM)。基于 SNR ~3,传感器的灵敏度和检测限分别计算为灵敏度 (569.62 μAnM-1cm-2) 和 LOD (166.67 pM)。这种预期的 CuO.GdO NSs/Nafion/GCE 传感器探针用于实际样品分析(人和兔血清)并发现可接受的结果。这种提出的电化学方法可以成为无酶传感器改进的先驱传感器开发,用于在广泛的范围内评估医疗保健和生物医学领域的生物分子。GdO NSs/Nafion/GCE 传感器探针用于实际样品分析(人和兔血清)并发现可接受的结果。这种提出的电化学方法可以成为无酶传感器改进的先驱传感器开发,用于在广泛的范围内评估医疗保健和生物医学领域的生物分子。GdO NSs/Nafion/GCE 传感器探针用于实际样品分析(人和兔血清)并发现可接受的结果。这种提出的电化学方法可以成为无酶传感器改进的先驱传感器开发,用于在广泛的范围内评估医疗保健和生物医学领域的生物分子。
更新日期:2020-09-01
down
wechat
bug