当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Part-scale thermo-mechanical modelling of distortions in Laser Powder Bed Fusion – Analysis of the sequential flash heating method with experimental validation
Additive Manufacturing ( IF 11.0 ) Pub Date : 2020-08-05 , DOI: 10.1016/j.addma.2020.101508
Mohamad Bayat , Christopher G. Klingaa , Sankhya Mohanty , David De Baere , Jesper Thorborg , Niels S. Tiedje , Jesper H. Hattel

Residual stresses and deflections are two major issues in laser-based powder bed fusion (L-PBF) parts. One of the most efficient and reliable ways for predicting residual stresses and final distortions is via a calibrated numerical model. In this work, a part-scale finite element thermo-mechanical model for Ti6Al4V is developed in the commercial software Abaqus/CAE 2018. The flash heating (FH) method is used as the initial multi-scaling law to avoid time-consuming meso-scale simulations. The model has been verified by doing a mesh-independency analysis. To check the validity of the model, dedicated experiments involving samples with specific scanning strategies were performed. Experimental measurements were made by optical 3D scanning with the fringe projection technique. An in-house made Python script was written for the stripe-wise and layer-wise partitioning of the numerical model, along with material and boundary condition attributions. As expected, the results show that layer-wise FH is insensitive to the scanning pattern and will lead to an isotropic stress field. It is shown that the FH method overestimates the minimum deflection magnitude compared to the experiments by 46.2 %. Sequential FH (SFH) is then proposed to resolve this problem. Results show that by refining the stripe widths in SFH from 15 mm to 1.5 mm, the deviation between the predicted and measured deflection reduces from 35.7 % to 1.19 %. However, the required computational time increases from 9.3 h to 65 h.



中文翻译:

激光粉末床融合中变形的局部比例热力学建模-连续闪速加热方法的分析和实验验证

残余应力和挠度是基于激光的粉末床熔合(L-PBF)零件中的两个主要问题。预测残余应力和最终变形的最有效,最可靠的方法之一是通过校准的数值模型。在这项工作中,在商业软件Abaqus / CAE 2018中开发了Ti6Al4V的局部尺度有限元热力学模型。使用闪蒸(FH)方法作为初始的多尺度定律,以避免耗时的中间尺度。规模模拟。该模型已通过进行网格独立性分析进行了验证。为了检查模型的有效性,进行了包含具有特定扫描策略的样品的专用实验。通过使用条纹投影技术的光学3D扫描进行实验测量。编写了内部制作的Python脚本,用于对数值模型进行条带化和分层划分,以及材料和边界条件属性。如预期的那样,结果表明逐层FH对扫描模式不敏感,并将导致各向同性应力场。结果表明,与实验相比,FH方法高估了最小挠度46.2%。然后提出了顺序FH(SFH)来解决此问题。结果表明,通过将SFH中的条带宽度从15 mm细化为1.5 mm,预测和测量的挠度之间的偏差从35.7%减小到1.19%。但是,所需的计算时间从9.3小时增加到65小时。结果表明,逐层FH对扫描模式不敏感,并会导致各向同性应力场。结果表明,与实验相比,FH方法高估了最小挠度46.2%。然后提出了顺序FH(SFH)来解决此问题。结果表明,通过将SFH中的条带宽度从15 mm细化为1.5 mm,预测和测量的挠度之间的偏差从35.7%减小到1.19%。但是,所需的计算时间从9.3小时增加到65小时。结果表明,逐层FH对扫描模式不敏感,并会导致各向同性应力场。结果表明,与实验相比,FH方法高估了最小挠度46.2%。然后提出了顺序FH(SFH)来解决此问题。结果表明,通过将SFH中的条带宽度从15 mm细化为1.5 mm,预测和测量的挠度之间的偏差从35.7%减小到1.19%。但是,所需的计算时间从9.3小时增加到65小时。结果表明,通过将SFH中的条带宽度从15 mm细化为1.5 mm,预测和测量的挠度之间的偏差从35.7%减小到1.19%。但是,所需的计算时间从9.3小时增加到65小时。结果表明,通过将SFH中的条纹宽度从15 mm细化为1.5 mm,预测和测量的挠度之间的偏差从35.7%减小到1.19%。但是,所需的计算时间从9.3小时增加到65小时。

更新日期:2020-08-05
down
wechat
bug