当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of Short-Term Synaptic Plasticity Effects in ZnO Nanowire-Based Memristors Using a Potentiation-Depression Rate Balance Equation
IEEE Transactions on Nanotechnology ( IF 2.1 ) Pub Date : 2020-01-01 , DOI: 10.1109/tnano.2020.3009734
Enrique Miranda , Gianluca Milano , Carlo Ricciardi

This letter deals with short-term plasticity (STP) effects in the conduction characteristics of single crystalline ZnO nanowires, including potentiation, depression and relaxation phenomena. The electrical behavior of the structures is modeled following Chua's approach for memristive systems, i.e. one equation for the electron transport and one equation for the memory state of the device. Linear conduction is assumed in the first case together with a voltage-controlled rate balance equation for the normalized conductance. The devices are subject to electrical stimuli such as ramped and pulsed voltages of both polarities with varying amplitude and frequency. In each case, the proposed model is able to account for the STP effects exhibited by ZnO highlighting its neuromorphic capabilities for bio-inspired circuits. An equivalent circuit representation and the SPICE implementation of the compact model is also provided.

中文翻译:

使用电位-抑制率平衡方程对基于 ZnO 纳米线的忆阻器的短期突触可塑性效应进行建模

这封信涉及单晶 ZnO 纳米线的传导特性中的短期可塑性 (STP) 效应,包括增强、抑制和弛豫现象。结构的电行为按照 Chua 的忆阻系统方法建模,即一个电子传输方程和一个器件存储状态方程。在第一种情况下假设线性传导以及归一化电导的电压控制速率平衡方程。这些设备受到电刺激,例如具有变化幅度和频率的两种极性的斜坡电压和脉冲电压。在每种情况下,所提出的模型都能够解释 ZnO 表现出的 STP 效应,突出了其仿生电路的神经形态能力。
更新日期:2020-01-01
down
wechat
bug