当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part H J. Mech. Eng. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Haemodynamic mechanism of formation and distribution of coronary atherosclerosis: A lesion-specific model.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ( IF 1.7 ) Pub Date : 2020-08-04 , DOI: 10.1177/0954411920947972
Jiling Feng 1 , Nannan Wang 2 , Yiliang Wang 2 , Xiaoxian Tang 3 , Jie Yuan 3
Affiliation  

Coronary arterial disease, as the most devastated cardiovascular disease, is caused by the atherosclerosis in the coronary arteries, which blocks the blood flow to the heart, resulting in the deficient supply of oxygen and nutrition to the heart, and eventually leading to heart failure. To date, haemodynamic mechanisms for atherosclerosis development are not fully understood although it is believed that the haemodynamic disturbance at the region of the arterial bifurcation, particular, bifurcation angle, plays an important role in the atherosclerosis development. In this study, two types of computational fluid dynamics models, lesion-specific and idealized models, combined with the computer tomography imaging techniques, are used to explore the mechanism of formation and distribution of the atherosclerosis around the bifurcation of left coronary artery and its association with the bifurcation angle. The lesion-specific model is used to characterize the effect of personalized features on the haemodynamic performance, while the idealized model is focusing on the effect of single factor, bifurcation angle, on the haemodynamic performance. The simulated results from both types of the models, combined with the clinical observation, revealed that the three key areas around the bifurcations are prone to formation of the atherosclerosis. Unlike the idealized models, lesion-specific modelling results did not show the significant correlation between the wall shear stress and bifurcation angle, although the mean value of the wall shear stress in smaller bifurcation angles (less than 90°) is higher than that with larger bifurcation angles (greater than 90°). In conclusion, lesion-specific computational fluid dynamics modelling is an efficient and convenient way to predict the haemodynamic performance around the bifurcation region, allowing the comprehensive information for the clinicians to predict the atherosclerosis development. The idealized models, which only focus on single parameter, may not provide the sufficient and reliable information for the clinical application. A novel multi-parameters modelling technique, therefore, is suggested to be developed in future, allowing the effects of many parameters on the haemodynamic performance to be evaluated.



中文翻译:

冠状动脉粥样硬化形成和分布的血流动力学机制:病变特异性模型。

冠状动脉疾病作为危害最严重的心血管疾病,是由于冠状动脉发生动脉粥样硬化,阻碍血液流向心脏,导致心脏供氧和营养不足,最终导致心力衰竭。迄今为止,动脉粥样硬化发展的血液动力学机制尚不完全清楚,尽管人们认为动脉分叉区域,特别是分叉角处的血流动力学紊乱在动脉粥样硬化的发展中起着重要作用。在这项研究中,两种类型的计算流体动力学模型,病变特异性模型和理想化模型,结合计算机断层扫描成像技术,用于探讨左冠状动脉分叉周围动脉粥样硬化的形成和分布机制及其与分叉角的关系。病灶特异性模型用于表征个性化特征对血流动力学性能的影响,而理想化模型则侧重于单因素分叉角对血流动力学性能的影响。两种模型的模拟结果,结合临床观察发现,分叉周围的三个关键区域容易形成动脉粥样硬化。与理想化模型不同,病变特异性建模结果未显示壁剪应力与分叉角之间的显着相关性,尽管较小分叉角(小于90°)的壁面剪应力平均值高于较大分叉角(大于90°)的壁面剪应力。总之,病灶特异性计算流体动力学建模是预测分叉区域周围血流动力学性能的有效且便捷的方法,可为临床医生提供全面的信息来预测动脉粥样硬化的发展。仅关注单个参数的理想化模型可能无法为临床应用提供足够可靠的信息。因此,建议将来开发一种新的多参数建模技术,以评估许多参数对血液动力学性能的影响。总之,病灶特异性计算流体动力学建模是一种有效且方便的预测分叉区域周围血流动力学性能的方法,可为临床医生提供全面的信息来预测动脉粥样硬化的发展。仅关注单个参数的理想化模型可能无法为临床应用提供足够可靠的信息。因此,建议将来开发一种新的多参数建模技术,以评估许多参数对血液动力学性能的影响。总之,病灶特异性计算流体动力学建模是预测分叉区域周围血流动力学性能的有效且便捷的方法,可为临床医生提供全面的信息来预测动脉粥样硬化的发展。仅关注单个参数的理想化模型可能无法为临床应用提供足够可靠的信息。因此,建议将来开发一种新的多参数建模技术,以评估许多参数对血液动力学性能的影响。为临床医生提供全面的信息来预测动脉粥样硬化的发展。仅关注单个参数的理想化模型可能无法为临床应用提供足够可靠的信息。因此,建议将来开发一种新的多参数建模技术,以评估许多参数对血液动力学性能的影响。为临床医生提供全面的信息来预测动脉粥样硬化的发展。仅关注单个参数的理想化模型可能无法为临床应用提供足够可靠的信息。因此,建议将来开发一种新的多参数建模技术,以评估许多参数对血液动力学性能的影响。

更新日期:2020-08-04
down
wechat
bug