当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to Wide Band Gap Chalcogenide Semiconductors.
Chemical Reviews ( IF 51.4 ) Pub Date : 2020-08-03 , DOI: 10.1021/acs.chemrev.0c00643
Rachel Woods-Robinson , Yanbing Han , Hanyu Zhang , Tursun Ablekim , Imran Khan , Kristin A Persson , Andriy Zakutayev

The original version of the article contained a number of problems related to references that may lead to error propagation in the scientific literature. We would like to correct these issues, and sincerely apologize to the readers and reference authors for any confusion they might have caused.
1.ref 120 should be replaced with ref 146 to indicate ZnSe band gap, in section 2.2.2
2.ref 132 should be replaced with ref 131 to indicate ZnS lattice matching to other materials, in section 3.1.1
3.ref 136 claims electrical conductivity of ∼10–5 S cm–1 for 3% Cu doped ZnS rather than for 0.1% Cu doped ZnS, in section 3.1.1
4.ref 148 claims conductivity of 0.06 S cm–1 and mobility of 86 cm2 V–1 s–1 instead of 0.02 S cm–1 and mobility of 13 cm2 V–1 s–1, respectively, for NSe doped ZnSe in section 3.1.1 (also in Table 1)
5.ref 163 and ref 67 should be cited for ∼3.5 and ∼3.0 eV band gaps of ZB and WZ MgTe respectively, in Table 1
6.ref 163, ref 225, and ref 226 to support data of intrinsic In2S3 in addition to ref 227, in Table 1
7.ref 171 claims p-type conduction due to Mn vacancy in RS instead of WZ phase of MnS, in Table 1
8.ref 188 claims conductivities up to ∼1550 S cm–1 instead of 50 S cm–1 in In-doped CdS (also in Table 1), and ref 187 is to In doping in CdTe, in section 3.1.4
9.ref 249 should read “Bhandari, R. K.; Hashimoto, Y.; Ito, K. CuAlS2 Thin-Films Prepared by Sulfurization of Metallic Precursors and their Properties. Jpn. J. Appl. Phys., 2004, 43 (10), 6890–6893”, in section 3.3.1.
10.ref 268 should be added to GeGa and SnGa defects in its following sentence, and TiGa defect should be referred to “Palacios, P.; Aguilera, I.; Wahnón, P.; Conesa J. C. Thermodynamics of the Formation of Ti- and Cr-doped CuGaS2 Intermediate-band Photovoltaic Materials. J. Phys. Chem. C2008, 112 (25), 9525–9529”, in section 3.3.1
11.ref 276 claims 2.2 to 2.5 eV instead of 2.5 to 2.7 eV, as experimental gap of AgAlSe2, in section 3.3.2
12.ref 305 and ref 306 should be swapped; ref 305 should refer to ionic conductivity, and ref 306 should refer to the electronic structure of Cu3TaS4, in section 3.4.2
13.ref 308 and ref 309 should be swapped, where ref 309 should refer to synthesis and ref 308 should refer to band gap of Cu3NbSe4, respectively, in section 3.4.2
14.ref 325 claims 2.6 eV instead of 2.2–2.6 eV as the gap for K2Hg3S4, in section 3.4.5
15.ref 327 should be added to ref 326 for the band gap of Cu3SbS3, and the band gaps of Li3SbS3, Na3SbS3, and Ca2Sb2S5 should refer to “Bhattacharya, S.; Chmielowski, R.; Dennler, G.; Madsen, G. K. H. Novel ternary sulfide thermoelectric materials from high throughput transport and defect calculations. J. Mater. Chem. A2016, 4 (28), 11086–11093”, in section 3.4.6
16.ref 345 claims the field-effect mobility of CuSCN to be 0.01–0.1 cm2 V–1 s–1 instead of 0.001–0.1 cm2 V–1 s–1, in section 3.5.3
17.ref 360 is to band gaps of CsYZnSe3, CsSmZnSe3, and CsErZnSe3, and ref 357 is with respect to band gaps of BaYCuS3, BaNdCuS3, and BaNdAgS3, in section 3.5.6
18.ref 424 refers to the previous sentence about bulk As2S3 material; instead the sentence about As2S3 monolayer, indirect gap, strain, and thickness should refer to “Debbichi, L.; Kim, H.; Björkman, T.; Eriksson, O.; Lebègue S. First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers. Phys. Rev. B2016, 93, 245307” and “Miao, N.; Zhou, J.; Sa, B.; Xu, B.; Sun, Z. Few-layer arsenic trichalcogenides: Emerging two-dimensional semiconductors with tunable indirect–direct band-gaps. J. Alloys Compd.2017, 699, 554–560”, in section 3.6.2
19.ref 478 and ref 479 should be swapped, where ref 478 refers to theoretical predictions for CdSe, ZnS, ZnSe, and ZnTe, and ref 479 refers to experimental observations of Ga in CuInSe2, in section 4.1.2
20.ref 504 and ref 277 discuss AgAlTe2 and AgAlSe2 instead of AgGaTe2 and AgGaSe2, respectively, and CuAlSe2 instead of CuAlS2 should be referenced to ref 269 in the same sentence, in section 4.1.3
ref 120 should be replaced with ref 146 to indicate ZnSe band gap, in section 2.2.2 ref 132 should be replaced with ref 131 to indicate ZnS lattice matching to other materials, in section 3.1.1 ref 136 claims electrical conductivity of ∼10–5 S cm–1 for 3% Cu doped ZnS rather than for 0.1% Cu doped ZnS, in section 3.1.1 ref 148 claims conductivity of 0.06 S cm–1 and mobility of 86 cm2 V–1 s–1 instead of 0.02 S cm–1 and mobility of 13 cm2 V–1 s–1, respectively, for NSe doped ZnSe in section 3.1.1 (also in Table 1) ref 163 and ref 67 should be cited for ∼3.5 and ∼3.0 eV band gaps of ZB and WZ MgTe respectively, in Table 1 ref 163, ref 225, and ref 226 to support data of intrinsic In2S3 in addition to ref 227, in Table 1 ref 171 claims p-type conduction due to Mn vacancy in RS instead of WZ phase of MnS, in Table 1 ref 188 claims conductivities up to ∼1550 S cm–1 instead of 50 S cm–1 in In-doped CdS (also in Table 1), and ref 187 is to In doping in CdTe, in section 3.1.4 ref 249 should read “Bhandari, R. K.; Hashimoto, Y.; Ito, K. CuAlS2 Thin-Films Prepared by Sulfurization of Metallic Precursors and their Properties. Jpn. J. Appl. Phys., 2004, 43 (10), 6890–6893”, in section 3.3.1. ref 268 should be added to GeGa and SnGa defects in its following sentence, and TiGa defect should be referred to “Palacios, P.; Aguilera, I.; Wahnón, P.; Conesa J. C. Thermodynamics of the Formation of Ti- and Cr-doped CuGaS2 Intermediate-band Photovoltaic Materials. J. Phys. Chem. C2008, 112 (25), 9525–9529”, in section 3.3.1 ref 276 claims 2.2 to 2.5 eV instead of 2.5 to 2.7 eV, as experimental gap of AgAlSe2, in section 3.3.2 ref 305 and ref 306 should be swapped; ref 305 should refer to ionic conductivity, and ref 306 should refer to the electronic structure of Cu3TaS4, in section 3.4.2 ref 308 and ref 309 should be swapped, where ref 309 should refer to synthesis and ref 308 should refer to band gap of Cu3NbSe4, respectively, in section 3.4.2 ref 325 claims 2.6 eV instead of 2.2–2.6 eV as the gap for K2Hg3S4, in section 3.4.5 ref 327 should be added to ref 326 for the band gap of Cu3SbS3, and the band gaps of Li3SbS3, Na3SbS3, and Ca2Sb2S5 should refer to “Bhattacharya, S.; Chmielowski, R.; Dennler, G.; Madsen, G. K. H. Novel ternary sulfide thermoelectric materials from high throughput transport and defect calculations. J. Mater. Chem. A2016, 4 (28), 11086–11093”, in section 3.4.6 ref 345 claims the field-effect mobility of CuSCN to be 0.01–0.1 cm2 V–1 s–1 instead of 0.001–0.1 cm2 V–1 s–1, in section 3.5.3 ref 360 is to band gaps of CsYZnSe3, CsSmZnSe3, and CsErZnSe3, and ref 357 is with respect to band gaps of BaYCuS3, BaNdCuS3, and BaNdAgS3, in section 3.5.6 ref 424 refers to the previous sentence about bulk As2S3 material; instead the sentence about As2S3 monolayer, indirect gap, strain, and thickness should refer to “Debbichi, L.; Kim, H.; Björkman, T.; Eriksson, O.; Lebègue S. First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers. Phys. Rev. B2016, 93, 245307” and “Miao, N.; Zhou, J.; Sa, B.; Xu, B.; Sun, Z. Few-layer arsenic trichalcogenides: Emerging two-dimensional semiconductors with tunable indirect–direct band-gaps. J. Alloys Compd.2017, 699, 554–560”, in section 3.6.2 ref 478 and ref 479 should be swapped, where ref 478 refers to theoretical predictions for CdSe, ZnS, ZnSe, and ZnTe, and ref 479 refers to experimental observations of Ga in CuInSe2, in section 4.1.2 ref 504 and ref 277 discuss AgAlTe2 and AgAlSe2 instead of AgGaTe2 and AgGaSe2, respectively, and CuAlSe2 instead of CuAlS2 should be referenced to ref 269 in the same sentence, in section 4.1.3 This article has not yet been cited by other publications.


中文翻译:

对宽带隙硫族化物半导体的校正。

本文的原始版本包含许多与参考相关的问题,这些问题可能导致科学文献中的错误传播。我们想纠正这些问题,并真诚地向读者和参考作者致歉,以免引起混淆。
1。在2.2.2节中应将ref 120替换为ref 146以指示ZnSe带隙
2。在第3.1.1节中,应使用参考131代替参考132,以指示ZnS晶格与其他材料的匹配
3。参考文献136在第3.1.1节中声称,掺杂3%的ZnS而不是掺杂0.1%的ZnS的电导率约为10 –5 S cm –1
4。ref 148声称,掺入N Se的ZnSe的电导率分别为0.02 S cm –1和13 cm 2 V –1 s –1分别为0.06 S cm –1和迁移率86 cm 2 V –1 s –1。第3.1.1节(也在表1中)
5,表1中应分别引用ref 163和ref 67分别表示ZB和WZ MgTe的〜3.5和〜3.0 eV带隙
6。ref 163,ref 225和ref 226支持表1中除了r​​ef 227之外的本征In 2 S 3数据
7。ref 171在表1中声称由于RS中的锰空位而不是MnS的WZ相导致p型导电
8。ref 188声称In-掺杂CdS中的电导率高达〜1550 S cm -1,而不是50 S cm -1(也在表1中),而ref 187是关于CdTe中In掺杂的,见3.1.4节。
9。编号249应显示为“ Bhandari,RK; 桥本(Y. Ito,K.通过金属前体的硫化制备的CuAlS 2薄膜及其性能。日本。J.应用 物理 2004年43(10),6890-6893” ,第3.3.1节。
10。ref 268应该在其后的句子中添加到Ge Ga和Sn Ga缺陷中,并且Ti Ga缺陷应称为“ Palacios,P.”。阿奎莱拉,I。瓦隆(Wahnón);钛和铬掺杂的CuGaS 2中带光伏材料形成的Conesa JC热力学。J.物理 化学 Ç 2008112(25),9525-9529” ,第3.3.1节
11。ref 276在第3.3.2节中将AgAlSe 2的实验间隙要求为2.2至2.5 eV,而不是2.5至2.7 eV。
12参考305和306应该互换; ref 305应指离子电导率,ref 306应指3.4.2节中的Cu 3 TaS 4的电子结构。
13ref 308和ref 309应该互换,分别在第3.4.2节中,其中ref 309应指合成,而ref 308应指Cu 3 NbSe 4的带隙。
14。ref 325在第3.4.5节中要求K 2 Hg 3 S 4的间隙为2.6 eV而不是2.2-2.6 eV
15对于Cu 3 SbS 3的带隙,应在参考326上添加参考327 ,Li 3 SbS 3,Na 3 SbS 3和Ca 2 Sb 2 S 5的带隙应参考“ Bhattacharya,S.”。Chmielowski,R .; Dennler,G .;Madsen,GKH基于高通量传输和缺陷计算的新型三元硫化物热电材料。J. Mater。化学 甲20164(28),11086-11093” ,在节3.4.6
16。参考345声称在3.5.3节中,CuSCN的场效应迁移率为0.01–0.1 cm 2 V –1 s –1,而不是0.001–0.1 cm 2 V –1 s –1
17。ref 360是关于CsYZnSe 3,CsSmZnSe 3和CsErZnSe 3的带隙,而ref 357是关于BaYCuS 3,BaNdCuS 3和BaNdAgS 3的带隙的,在3.5.6节中。
18岁ref 424是指前面关于体As 2 S 3材料的句子;相反,关于As 2 S 3单层,间接间隙,应变和厚度的句子应参考“ Debbichi,L.”。金,H。比约克曼,T。俄勒冈州埃里克森;LebègueS.二维三氯杀螨醇和倍半硫属化物单层的第一性原理研究。物理 版本B 201693,245307”和“苗,N .; 周建 Sa,B .; 徐斌 Sun,Z.几层砷三氯甲烷:新兴的具有可调间接-直接带隙的二维半导体。J.合金公司 2017年699,554-560” ,3.6.2节
19ref 478和ref 479应该互换,其中ref 478指的是CdSe,ZnS,ZnSe和ZnTe的理论预测,而ref 479指的是4.1.2节中CuInSe 2中Ga的实验观察结果
20REF 504和ref 277讨论AgAlTe 2和AgAlSe 2代替AgGaTe 2和AgGaSe 2分别和CuAlSe 2代替CuAlS 2应参考在同一个句子到REF 269,4.1.3节中
ref 120应该用ref 146代替以指示ZnSe带隙,在第2.2.2节中ref 132应该用ref 131代替以表明ZnS晶格与其他材料匹配,在3.1.1节中ref 136要求电导率约为10 对于3.%Cu掺杂的ZnS,而不是0.1%Cu掺杂的ZnS,为5 S cm –1,在第3.1.1节中,参考148声称电导率为0.06 S cm –1,迁移率为86 cm 2 V –1 s –1而不是0.02。对于N Se,S cm –1和迁移率分别为13 cm 2 V –1 s –1在3.1.1节中(也在表1中)掺杂的ZnSe应分别引用ZB和WZ MgTe的〜3.5和〜3.0 eV带隙的参考文献163和ref 67,在表1中参考文献163,参考文献225和参考文献226除了参考227外,本征In 2 S 3的支持数据,在表1中,参考171声称由于RS中的锰空位而不是MnS的WZ相导致p型导电,在表1中,参考188声称电导率高达〜1550 S cm In掺杂的CdS中的–1而不是50 S cm –1(也在表1中),并且参考文献187涉及CdTe中的In掺杂,在第3.1.4节中,参考文献249应该显示为“ Bhandari,RK; 桥本(Y. Ito,K.通过金属前体的硫化制备的CuAlS 2薄膜及其性能。日本。J.应用 物理 2004年43(10),6890-6893” ,第3.3.1节。ref 268应该在其后的句子中添加到Ge Ga和Sn Ga缺陷中,并且Ti Ga缺陷应称为“ Palacios,P .;阿奎莱拉,I。瓦隆(Wahnón);钛和铬掺杂的CuGaS 2中带光伏材料形成的Conesa JC热力学。J.物理 化学 Ç 2008112(25),9525-9529” ,第3.3.1节参考文献276的权利要求2.2至2.5电子伏特,而不是2.5〜2.7电子伏特,如AgAlSe实验间隙2在第3.3.2节中,应将参考305和参考306互换;参考305应指离子电导率,参考306应指Cu 3 TaS 4的电子结构,在第3.4.2节中,参考308和参考309应互换,其中参考309应指合成,参考308应指在第3.4.2节中,Cu 3 NbSe 4的带隙分别为2.6 eV而不是2.2–2.6 eV,因为在第3.4.5节中,K 2 Hg 3 S 4的带隙应将ref 327添加到ref 326中Cu 3 SbS 3的带隙,Li 3 SbS 3,Na 3 SbS的带隙3,而Ca 2 Sb 2 S 5应该指“ Bhattacharya,S .; Chmielowski,R .; Dennler,G .;Madsen,GKH基于高通量传输和缺陷计算的新型三元硫化物热电材料。J. Mater。化学 甲20164(28),11086-11093” ,在第CuSCN的REF 3.4.6 345权利要求中的场效应迁移率是0.01-0.1厘米2 V -1小号-1代替0.001-0.1厘米2 V - 1 s –1,在3.5.3节中,参考360是CsYZnSe 3,CsSmZnSe 3和CsErZnSe 3的带隙,参考357涉及BaYCuS 3,BaNdCuS 3和BaNdAgS 3的带隙,在3.5.6节中,ref 424涉及关于As 2 S 3块状材料的先前句子;相反,关于As 2 S 3单层,间接间隙,应变和厚度的句子应参考“ Debbichi,L.”。金,H。比约克曼,T。俄勒冈州埃里克森;LebègueS.二维三氯杀螨醇和倍半硫属化物单层的第一性原理研究。物理 版本B 201693,245307”和“苗,北;周建 Sa,B .; 徐斌 Sun,Z。几层砷三硫:新兴的具有可调间接-直接带隙的二维半导体。J.合金公司 2017年699,554-560” ,3.6.2节REF 478和REF 479应被交换,其中REF 478指的是用于硒化镉,硫化锌,硒化锌,和的ZnTe理论预测,和ref 479指的是在镓的实验观察的CuInSe 2,在第4.1.2节REF 504和ref 277讨论AgAlTe 2和AgAlSe 2代替AgGaTe 2和AgGaSe 2,分别与CuAlSe 2代替CuAlS的2 应该在同一句子的4.1.3节中引用ref269。其他出版物尚未引用此文章。
更新日期:2020-08-12
down
wechat
bug