当前位置: X-MOL 学术Front. Plant Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Can Alternative Metabolic Pathways and Shunts Overcome Salinity Induced Inhibition of Central Carbon Metabolism in Crops?
Frontiers in Plant Science ( IF 4.1 ) Pub Date : 2020-06-30 , DOI: 10.3389/fpls.2020.01072
Ali Bandehagh 1, 2 , Nicolas L Taylor 1
Affiliation  

The annual cost of lost crop production from exposure to salinity has major impacts on food security in all parts of the world. Salinity stress disturbs energy metabolism and knowledge of the impacts on critical processes controlling plant energy production is key to successfully breeding salt tolerant crops. To date, little progress has been achieved using classic breeding approaches to develop salt tolerance. The hope of some salinity researchers is that through a better understanding of the metabolic responses and adaptation to salinity exposure, new breeding targets can be suggested to help develop salt tolerant crops. Plants sense and react to salinity through a complex system of sensors, receptor systems, transporters, signal transducers, and gene expression regulators in order to control the uptake of salts and to induce tolerant metabolism that jointly leads to changes in growth rate and biomass production. During this response, there must be a balance between supply of energy from mitochondria and chloroplasts and energy demands for water and ion transport, growth, and osmotic adjustment. The photosynthetic response to salinity has been thoroughly researched and generally we see a sharp drop in photosynthesis after exposure to salinity. However, less attention has been given to the effect of salt stress on plant mitochondrial respiration and the metabolic processes that influence respiratory rate. A further complication is the wide range of respiratory responses that have been observed in different plant species, which have included major and minor increases, decreases, and no change in respiratory rate after salt exposure. In this review, we begin by considering physiological and biochemical impacts of salinity on major crop plants. We then summarize and consider recent advances that have characterized changes in abundance of metabolites that are involved in respiratory pathways and their alternative routes and shunts in terms of energy metabolism in crop plants. We will consider the diverse molecular responses of cellular plant metabolism during salinity exposure and suggest how these metabolic responses might aid in salinity tolerance. Finally, we will consider how this commonality and diversity should influence how future research of the salinity responses of crops plants should proceed.



中文翻译:

替代代谢途径和分流能否克服盐度诱导的农作物中部碳代谢抑制作用?

由于暴露于盐碱而造成的农作物生产损失的年度成本对世界各地的粮食安全产生重大影响。盐分胁迫会干扰能量代谢,因此了解影响控制植物能量生产的关键过程是成功育种耐盐作物的关键。迄今为止,使用经典育种方法发展耐盐性进展甚微。一些盐度研究人员的希望是,通过更好地理解代谢反应和适应盐分暴露,可以提出新的育种目标来帮助开发耐盐作物。植物通过复杂的传感器,受体系统,转运蛋白,信号传感器,基因表达调节剂,以控制盐的吸收并诱导耐受的代谢,共同导致生长速率和生物量产生变化。在此响应过程中,线粒体和叶绿体的能量供应与水和离子运输,生长和渗透调节的能量需求之间必须保持平衡。已经对光合作用对盐度的反应进行了充分的研究,一般来说,暴露于盐度后我们的光合作用急剧下降。但是,盐胁迫对植物线粒体呼吸作用和影响呼吸频率的代谢过程的影响很少受到关注。进一步的复杂性是,在不同的植物物种中观察到了广泛的呼吸反应,包括主要和次要的增加,减少,盐接触后呼吸频率无变化。在这篇综述中,我们首先考虑盐度对主要农作物的生理和生化影响。然后,我们总结并考虑了最近的进展,这些进展的特征在于涉及呼吸途径的代谢产物的丰度变化及其在作物植物能量代谢方面的替代途径和分流。我们将考虑盐分暴露过程中细胞植物代谢的各种分子反应,并提出这些代谢反应如何有助于盐分耐受。最后,我们将考虑这种共性和多样性如何影响未来对作物植物盐分响应的研究应如何进行。我们首先考虑盐度对主要农作物的生理和生化影响。然后,我们总结并考虑了最近的进展,这些进展的特征在于涉及呼吸途径的代谢产物的丰度变化及其在作物植物能量代谢方面的替代途径和分流。我们将考虑盐分暴露过程中细胞植物代谢的各种分子反应,并提出这些代谢反应如何有助于盐分耐受。最后,我们将考虑这种共性和多样性将如何影响未来对作物植物盐分响应的研究应如何进行。我们首先考虑盐度对主要农作物的生理和生化影响。然后,我们总结并考虑了最近的进展,这些进展的特征在于涉及呼吸途径的代谢产物的丰度变化及其在作物植物能量代谢方面的替代途径和分流。我们将考虑盐分暴露过程中细胞植物代谢的各种分子反应,并提出这些代谢反应如何有助于盐分耐受。最后,我们将考虑这种共性和多样性应如何影响未来对作物植物盐分响应的研究应如何进行。然后,我们总结并考虑了最近的进展,这些进展的特征在于涉及呼吸途径的代谢产物的丰度变化及其在作物植物能量代谢方面的替代途径和分流。我们将考虑盐分暴露过程中细胞植物代谢的各种分子反应,并提出这些代谢反应如何有助于盐分耐受。最后,我们将考虑这种共性和多样性应如何影响未来对作物植物盐分响应的研究应如何进行。然后,我们总结并考虑了最近的进展,这些进展的特征在于涉及呼吸途径的代谢产物的丰度变化及其在作物植物能量代谢方面的替代途径和分流。我们将考虑盐分暴露过程中细胞植物代谢的各种分子反应,并提出这些代谢反应如何有助于盐分耐受。最后,我们将考虑这种共性和多样性将如何影响未来对作物植物盐分响应的研究应如何进行。

更新日期:2020-08-04
down
wechat
bug