当前位置: X-MOL 学术Theor. Comput. Sci. › 论文详情
Covering and packing of rectilinear subdivision
Theoretical Computer Science ( IF 0.747 ) Pub Date : 2020-08-04 , DOI: 10.1016/j.tcs.2020.07.038
Satyabrata Jana; Supantha Pandit

We study a class of geometric covering and packing problems for bounded closed regions on the plane. We are given a set of axis-parallel line segments that induce a planar subdivision with bounded (rectilinear) faces. We are interested in the following problems.

(P1) Stabbing-Subdivision:

Stab all closed bounded faces of the planar subdivision by selecting a minimum number of points in the plane.

(P2) Independent-Subdivision:

Select a maximum size collection of pairwise non-intersecting closed bounded faces of the planar subdivision.

(P3) Dominating-Subdivision:

Select a minimum size collection of bounded faces of the planar subdivision such that every other face of the subdivision that is not selected has a non-empty intersection (i.e., sharing an edge or a vertex) with some selected face.

We show that these problems are NP-hard. We even prove that these problems are NP-hard when we concentrate only on the rectangular faces of the subdivision. Further, we provide constant factor approximation algorithms for the Stabbing-Subdivision problem.

更新日期:2020-09-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug