当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New formulation of ductility reduction factor of RC frame-wall dual systems for design under earthquake loadings
Soil Dynamics and Earthquake Engineering ( IF 4.2 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.soildyn.2020.106279
Matteo Zerbin , Alessandra Aprile , Enrico Spacone

Abstract Any design of standard structures in keeping with seismic safety norms is usually founded on an approach characterised by force-based design. Research has proven, over the course of several decades, that such an approach has a solid basis and can easily be applied by the engineers in charge of the design project. Furthermore, when taken in conjunction with principles of capacity design, the force-based approach is effective against premature structural failures. The force-based design approach, however, suffers from a number of shortcomings, especially regarding the way it has been employed in seismic design codes of recent years. One of the weaknesses can be attributed to the way the base shear is calculated via a reduction factor that has been defined a priori and that remains constant for a certain structural system typology. The outcome of depending on the same design input shows that structures identical in type but variant in geometry undergo varying ductility demands and exhibit, therefore, a different seismic performance. In this research, a procedure for assessing force-reduction factors of RC frame-wall dual systems is developed, by combining the analytical formulations proposed by Zerbin et al. (2019) for wall and frame systems, separately. These analytical formulations make it possible to combine global and local ductility demands, thereby allowing a calculation of the factors of force ductility reduction that result in balanced local ductility demands and the predicted levels of damage. The proposed method is based on empiric expressions that merely require – as input data – the information available when starting the design process. The proposed formulation is applied to a set of frame-wall structures and tested by means of both nonlinear static and dynamic analyses. The current study has produced conclusions showing that, with respect to such dual system structures' seismic behaviour, the procedure proposed herein yields a more accurate assessment of than the approach being currently used by design guidelines; in turn this method may provide a valid contribution to the evolving guidelines of future seismic design codes.

中文翻译:

地震荷载下钢筋混凝土框架-墙双系统延性折减系数新公式

摘要 任何符合抗震安全规范的标准结构设计通常都建立在以基于力的设计为特征的方法之上。几十年来的研究证明,这种方法具有坚实的基础,并且可以由负责设计项目的工程师轻松应用。此外,当与容量设计原则结合使用时,基于力的方法可有效防止过早的结构故障。然而,基于力的设计方法有许多缺点,尤其是近年来在抗震设计规范中的使用方式。弱点之一可归因于基础剪力通过折减系数计算的方式,该折减系数已被先验定义并且对于特定结构系统类型保持恒定。取决于相同设计输入的结果表明,类型相同但几何形状不同的结构会经历不同的延性要求,因此表现出不同的抗震性能。在这项研究中,通过结合 Zerbin 等人提出的分析公式,开发了一种评估 RC 框架 - 墙双系统的减力系数的程序。(2019) 分别用于墙壁和框架系统。这些分析公式可以结合全局和局部延展性需求,从而允许计算力延展性降低的因素,从而平衡局部延展性需求和预测的损坏水平。所提出的方法基于经验表达式,该表达式仅需要(作为输入数据)在开始设计过程时可用的信息。所提出的公式应用于一组框架墙结构,并通过非线性静态和动态分析进行测试。目前的研究得出的结论表明,对于这种双系统结构的地震行为,本文提出的程序比设计指南目前使用的方法产生了更准确的评估;反过来,这种方法可以为未来抗震设计规范的发展指南提供有效的贡献。此处提出的程序比设计指南目前使用的方法产生更准确的评估;反过来,这种方法可以为未来抗震设计规范的发展指南提供有效的贡献。此处提出的程序比设计指南目前使用的方法产生更准确的评估;反过来,这种方法可以为未来抗震设计规范的发展指南提供有效的贡献。
更新日期:2020-11-01
down
wechat
bug