当前位置: X-MOL 学术Atmos. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of atmosphere-wave-ocean/ice interactions on a polar low simulation over the Barents Sea
Atmospheric Research ( IF 4.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.atmosres.2020.105183
Lichuan Wu

Abstract The impact of atmosphere-wave-ocean/ice interactions on the development of a hurricane-like polar low (PL) over the Barents Sea during 18–21 December 2002 is investigated using a fully coupled atmosphere-wave-ocean/ice model with five model settings. The atmosphere-wave-ocean/ice interactions have a marginal influence on the PL development when the baroclinic instability is a dominating factor. However, they do have an influence on the PL development when the role of baroclinic instability vanishes. The atmosphere-wave interactions have a limited influence on the PL intensity but they extend the size of the anticyclonic loop of the PL track. In contrast, the atmosphere-ocean interactions reduce the size of the track loop since the ice coverage is increased due to the atmosphere-ocean coupling which limits the northward movement of the PL. Besides, the increase of the ice coverage reduces the PL precipitation, in contrast, the wave coupling processes increase the PL precipitation. The atmosphere-ocean coupling processes enhance the PL intensity in term of the minimum sea level pressure which differs from previous studies that the atmosphere-ocean coupling has a negative feedback on the development of cyclones. The positive feedback from atmosphere-ocean coupling is more significant when the wave coupling processes are added into the model. The feedback from atmosphere-ocean coupling processes are determined by two processes: (1) heat flux induced sea surface cooling which has a negative feedback on the PL development, and (2) the strong wind-induced sea surface warming caused by the upper-ocean mixing when the temperature inversion exists in the ocean close to the ice edge. In this PL case, the wave coupling processes enhance the upper-ocean mixing and bring warm water to the surface in the area with ocean temperature inversions. Besides, the atmosphere-ocean coupling processes enhance the thermal wind of the PL and alter the vertical structure of the PL.

中文翻译:

大气-波浪-海洋/冰相互作用对巴伦支海极低模拟的影响

摘要 使用完全耦合的大气-波浪-海洋/冰模型研究了 2002 年 12 月 18 日至 21 日期间大气-波浪-海洋/冰相互作用对巴伦支海类似飓风的极低 (PL) 发展的影响。五个模型设置。当斜压不稳定性是主要因素时,大气-波浪-海洋/冰相互作用对 PL 发展具有边际影响。然而,当斜压不稳定性的作用消失时,它们确实对 PL 发展产生影响。大气波相互作用对 PL 强度的影响有限,但它们扩展了 PL 轨道的反气旋环的大小。相比之下,由于大气-海洋耦合限制了 PL 向北移动,冰覆盖范围增加,因此大气-海洋相互作用减小了轨道环路的大小。此外,冰盖的增加减少了PL降水,相反,波耦合过程增加了PL降水。大气-海洋耦合过程在最低海平面压力方面增强了PL强度,这不同于以往研究认为大气-海洋耦合对气旋发展具有负反馈。在模型中加入波浪耦合过程后,大气-海洋耦合的正反馈更为显着。大气-海洋耦合过程的反馈由两个过程决定:(1)热通量引起的海面冷却对PL发展具有负反馈;(2)强风引起的上层海面变暖。当温度反转存在于靠近冰缘的海洋中时,海洋混合。在这种 PL 情况下,波耦合过程增强了上层海洋的混合,并将温水带到海洋温度反转区域的地表。此外,大气-海洋耦合过程增强了PL的热风并改变了PL的垂直结构。
更新日期:2021-01-01
down
wechat
bug