当前位置: X-MOL 学术Exp. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Damping of gravity–capillary waves on the surface of turbulent fluid
Experiments in Fluids ( IF 2.3 ) Pub Date : 2020-08-01 , DOI: 10.1007/s00348-020-03022-5
Olga Shomina , Ivan Kapustin , Stanislav Ermakov

Investigation of damping of gravity–capillary waves (GCW) on the surface of turbulent fluid is a classical problem which geophysical applications are related to the problems of swell damping, interpretation of radar and optical images of ship wakes, development of physical mechanisms of wind wave suppression, etc. Analysis of the relevant literature reveals the necessity of setting reliable experiments to study the effect of damping of GCW due to turbulence. An original laboratory method of investigation of surface wave damping due to turbulence is described. The method is based on the parametric excitation of standing surface waves (so-called Faraday ripples) and simultaneous and independent generation of turbulence. The wave damping coefficient is determined by a threshold acceleration corresponding to the surface wave parametric excitation. The disadvantages of the previously used methods are eliminated or significantly reduced in the presented method, and the results are formulated in terms of eddy viscosity. It is revealed that the eddy viscosity coefficient is proportional to the rms velocity of turbulent pulsations, and achieves a maximum as a function of GCW frequency, when the GCW wavelengths are of order of the scales of turbulent eddies. This effect has never been mentioned in the literature, since the previous studies were focused on the investigation of wave damping due to small-scale (relative to the GCW wavelengths) turbulence. Applications of the obtained results to real-sea conditions are discussed.

中文翻译:

湍流流体表面重力-毛细波的阻尼

湍流表面重力-毛细管波 (GCW) 阻尼的研究是一个经典问题,地球物理应用涉及膨胀阻尼问题、雷达解释和船舶尾流光学图像、风波物理机制的发展抑制等。对相关文献的分析表明,有必要设置可靠的实验来研究湍流对GCW阻尼的影响。描述了研究由湍流引起的表面波阻尼的原始实验室方法。该方法基于驻波(所谓的法拉第波纹)的参数激励和湍流的同时和独立生成。波浪阻尼系数由对应于表面波参数激励的阈值加速度确定。在所提出的方法中消除或显着减少了先前使用的方法的缺点,并且根据涡流粘度来表述结果。结果表明,涡粘性系数与湍流脉动的均方根速度成正比,并在 GCW 波长为湍流涡旋尺度的数量级时达到最大值,作为 GCW 频率的函数。文献中从未提到过这种效应,因为之前的研究集中在研究小尺度(相对于 GCW 波长)湍流引起的波浪阻尼。讨论了所得结果在真实海况中的应用。结果表明,涡粘性系数与湍流脉动的均方根速度成正比,并在 GCW 波长为湍流涡旋尺度的数量级时达到最大值,作为 GCW 频率的函数。文献中从未提到过这种效应,因为之前的研究集中在研究小尺度(相对于 GCW 波长)湍流引起的波浪阻尼。讨论了所得结果在真实海况中的应用。结果表明,涡粘性系数与湍流脉动的均方根速度成正比,并在 GCW 波长为湍流涡旋尺度的数量级时达到最大值,作为 GCW 频率的函数。文献中从未提到过这种效应,因为之前的研究集中在研究小尺度(相对于 GCW 波长)湍流引起的波浪阻尼。讨论了所得结果在真实海况中的应用。因为之前的研究集中在研究由于小尺度(相对于 GCW 波长)湍流引起的波浪阻尼。讨论了所得结果在真实海况中的应用。因为之前的研究集中在研究由于小尺度(相对于 GCW 波长)湍流引起的波浪阻尼。讨论了所得结果在真实海况中的应用。
更新日期:2020-08-01
down
wechat
bug