当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Cosmic Merger Rate Density Evolution of Compact Binaries Formed in Young Star Clusters and in Isolated Binaries
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2020-08-03 , DOI: 10.3847/1538-4357/ab9b78
Filippo Santoliquido 1, 2 , Michela Mapelli 1, 2, 3 , Yann Bouffanais 1, 2 , Nicola Giacobbo 1, 2 , Ugo N. Di Carlo 2, 4 , Sara Rastello 1, 2 , M. Celeste Artale 5 , Alessandro Ballone 1, 2
Affiliation  

Next generation ground-based gravitational-wave detectors will observe binary black hole (BBH) mergers up to redshift $\gtrsim{}10$, probing the evolution of compact binary (CB) mergers across cosmic time. Here, we present a new data-driven model to estimate the cosmic merger rate density (MRD) evolution of CBs, by coupling catalogs of CB mergers with observational constraints on the cosmic star formation rate density and on the metallicity evolution of the Universe. We adopt catalogs of CB mergers derived from recent $N-$body and population-synthesis simulations, to describe the MRD of CBs formed in young star clusters (hereafter, dynamical CBs) and in the field (hereafter, isolated CBs). The local MRD of dynamical BBHs is $\mathcal{R}_{\rm BBH}=67^{+29}_{-23}$ Gpc$^{-3}$ yr$^{-1}$, consistent with the 90% credible interval from the first and second observing run (O1 and O2) of the LIGO-Virgo collaboration, and with the local MRD of isolated BBHs ($\mathcal{R}_{\rm BBH}=49^{+79}_{-37}$ Gpc$^{-3}$ yr$^{-1}$). The local MRD of dynamical and isolated black hole-neutron star binaries (BHNSs) is $\mathcal{R}_{\rm BHNS}=38^{+32}_{-24}$ and $45^{+45}_{-32}$ Gpc$^{-3}$ yr$^{-1}$, respectively. Both values are consistent with the upper limit inferred from O1 and O2. Finally, the local MRD of dynamical binary neutron stars (BNSs, $\mathcal{R}_{\rm BNS}=150^{+56}_{-40}$ Gpc$^{-3}$ yr$^{-1}$) is a factor of two lower than the local MRD of BNSs formed in isolated binaries ($\mathcal{R}_{\rm BNS}=281^{+109}_{-75}$ Gpc$^{-3}$ yr$^{-1}$). The MRD for all CB classes grows with redshift, reaching its maximum at $z \in [1.5,2.5]$, and then decreases. This trend springs from the interplay between cosmic star formation rate, metallicity evolution and delay time of binary compact objects.

中文翻译:

在年轻星团和孤立双星中形成的致密双星的宇宙合并率密度演化

下一代地基引力波探测器将观察到红移 $\gtrsim{}10$ 的双黑洞 (BBH) 合并,探索宇宙时间中紧凑双星 (CB) 合并的演变。在这里,我们提出了一种新的数据驱动模型,通过将 CB 合并目录与宇宙恒星形成率密度和宇宙金属丰度演化的观测约束相结合,来估计 CB 的宇宙合并率密度 (MRD) 演化。我们采用从最近的 $N-$body 和人口合成模拟得出的 CB 合并目录,来描述在年轻星团(以下称为动态 CB)和现场(以下称为孤立的 CB)中形成的 CB 的 MRD。动态 BBH 的局部 MRD 为 $\mathcal{R}_{\rm BBH}=67^{+29}_{-23}$ Gpc$^{-3}$ yr$^{-1}$,与 LIGO-Virgo 合作的第一次和第二次观测运行(O1 和 O2)的 90% 可信区间以及孤立 BBH 的局部 MRD 一致($\mathcal{R}_{\rm BBH}=49^ {+79}_{-37}$ Gpc$^{-3}$ 年$^{-1}$)。动态和孤立的黑洞-中子星双星(BHNS)的局部 MRD 为 $\mathcal{R}_{\rm BHNS}=38^{+32}_{-24}$ 和 $45^{+45}_ {-32}$ Gpc$^{-3}$ yr$^{-1}$,分别。这两个值都与从 O1 和 O2 推断出的上限一致。最后,动态双中子星的局部MRD(BNSs,$\mathcal{R}_{\rm BNS}=150^{+56}_{-40}$ Gpc$^{-3}$yr$^{ -1}$) 比孤立二进制中形成的 BNS 的局部 MRD 低两倍 ($\mathcal{R}_{\rm BNS}=281^{+109}_{-75}$ Gpc$^ {-3}$ 年$^{-1}$)。所有 CB 类的 MRD 随红移而增长,在 $z \in [1.5,2.5]$ 处达到最大值,然后减少。这一趋势源于宇宙恒星形成率、金属丰度演化和双致密天体延迟时间之间的相互作用。
更新日期:2020-08-03
down
wechat
bug