当前位置: X-MOL 学术Nat. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power-saving design opportunities for wireless intracortical brain-computer interfaces.
Nature Biomedical Engineering ( IF 26.8 ) Pub Date : 2020-08-03 , DOI: 10.1038/s41551-020-0595-9
Nir Even-Chen 1 , Dante G Muratore 1, 2 , Sergey D Stavisky 1, 2, 3 , Leigh R Hochberg 4, 5, 6 , Jaimie M Henderson 2, 3 , Boris Murmann 1, 2 , Krishna V Shenoy 1, 2, 7, 8, 9, 10
Affiliation  

The efficacy of wireless intracortical brain–computer interfaces (iBCIs) is limited in part by the number of recording channels, which is constrained by the power budget of the implantable system. Designing wireless iBCIs that provide the high-quality recordings of today’s wired neural interfaces may lead to inadvertent over-design at the expense of power consumption and scalability. Here, we report analyses of neural signals collected from experimental iBCI measurements in rhesus macaques and from a clinical-trial participant with implanted 96-channel Utah multielectrode arrays to understand the trade-offs between signal quality and decoder performance. Moreover, we propose an efficient hardware design for clinically viable iBCIs, and suggest that the circuit design parameters of current recording iBCIs can be relaxed considerably without loss of performance. The proposed design may allow for an order-of-magnitude power savings and lead to clinically viable iBCIs with a higher channel count.



中文翻译:

无线皮质内脑机接口的节能设计机会。

无线皮质内脑机接口(iBCIs)的功效部分受到记录通道数量的限制,而记录通道数量又受到植入系统功率预算的限制。设计提供当今有线神经接口高质量记录的无线 iBCI 可能会导致无意中的过度设计,而代价是功耗和可扩展性。在这里,我们报告了对恒河猴实验 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者收集的神经信号的分析,以了解信号质量和解码器性能之间的权衡。此外,我们为临床上可行的 iBCIs 提出了一种有效的硬件设计,并建议当前记录 iBCIs 的电路设计参数可以大大放宽,而不会损失性能。所提出的设计可以实现数量级的节能,并带来临床上可行的具有更高通道数的 iBCI。

更新日期:2020-08-03
down
wechat
bug