当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Calendering-Compatible Macroporous Architecture for Silicon-Graphite Composite toward High-Energy Lithium-Ion Batteries.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-08-02 , DOI: 10.1002/adma.202003286
Yeonguk Son 1 , Namhyung Kim 2 , Taeyong Lee 3 , Yoonkwang Lee 3 , Jiyoung Ma 3 , Sujong Chae 4 , Jaekyung Sung 3 , Hyungyeon Cha 3 , Youngshin Yoo 3 , Jaephil Cho 3
Affiliation  

Porous strategies based on nanoengineering successfully mitigate several problems related to volume expansion of alloying anodes. However, practical application of porous alloying anodes is challenging because of limitations such as calendering incompatibility, low mass loading, and excessive usage of nonactive materials, all of which cause a lower volumetric energy density in comparison with conventional graphite anodes. In particular, during calendering, porous structures in alloying‐based composites easily collapse under high pressure, attenuating the porous characteristics. Herein, this work proposes a calendering‐compatible macroporous architecture for a Si–graphite anode to maximize the volumetric energy density. The anode is composed of an elastic outermost carbon covering, a nonfilling porous structure, and a graphite core. Owing to the lubricative properties of the elastic carbon covering, the macroporous structure coated by the brittle Si nanolayer can withstand high pressure and maintain its porous architecture during electrode calendering. Scalable methods using mechanical agitation and chemical vapor deposition are adopted. The as‐prepared composite exhibits excellent electrochemical stability of >3.6 mAh cm−2, with mitigated electrode expansion. Furthermore, full‐cell evaluation shows that the composite achieves higher energy density (932 Wh L−1) and higher specific energy (333 Wh kg−1) with stable cycling than has been reported in previous studies.

中文翻译:

面向高能锂离子电池的硅-石墨复合材料的压延兼容大孔结构。

基于纳米工程的多孔策略成功地缓解了与合金阳极体积膨胀有关的若干问题。然而,由于诸如压延不相容性,低质量负载和过度使用非活性材料的局限性,多孔合金阳极的实际应用具有挑战性,与常规石墨阳极相比,所有这些都导致较低的体积能密度。特别是在压延过程中,基于合金的复合材料中的多孔结构在高压下容易坍塌,从而削弱了多孔性。在此,这项工作提出了一种适合硅石墨阳极的压延兼容大孔结构,以最大化体积能量密度。阳极由弹性最外层碳覆盖层,非填充多孔结构和石墨芯组成。由于弹性碳覆盖物的润滑性能,被脆性Si纳米层覆盖的大孔结构可以承受高压并在电极压延期间保持其多孔结构。采用了机械搅拌和化学气相沉积的可扩展方法。制备的复合材料具有优异的电化学稳定性> 3.6 mAh cm -2,并且电极膨胀减小。此外,全电池评估表明,与以前的研究相比,该复合材料在稳定的循环下实现了更高的能量密度(932 Wh L -1)和更高的比能(333 Wh kg -1)。
更新日期:2020-09-15
down
wechat
bug