当前位置: X-MOL 学术Fire Saf. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mesoscale numerical modeling and characterization of the effect of reinforcement textile on the elevated temperature and tensile behaviour of carbon textile-reinforced concrete composite
Fire Safety Journal ( IF 3.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.firesaf.2020.103186
Manh Tien Tran , Xuan Hong Vu , Emmanuel Ferrier

Abstract This paper presents both experimental and mesoscale modeling results of the direct tensile behaviour of two carbon TRC composites at elevated temperatures ranging from 25 °C to 600 °C. Two reinforcement carbon textiles were manufactured industrially in the factory with different geometries and treatment products to improve the textile/matrix bond. For the numerical approach, the input data of the numerical models were chosen from the experimental results of TRC component materials (carbon textiles, cementitious matrix). The carbon TRCs gave the strain-hardening behaviour with different phases depending on elevated temperature levels. Furthermore, the numerical model highlighted the failure mode with the transversal cracks on the specimen surface, using the crack damage model for the concrete matrix. The effect of elevated temperature on the TRC behaviour and performance of the TRC was determined and analyzed by comparing it with the results obtained at room temperature. By comparing the experimental results on both carbon TRCs, the effect of the reinforcement textile on the thermomechanical behaviour of TRC composites could also be highlighted and discussed. The numerical results of the carbon TRCs at elevated temperature levels were also compared with experimental results. The good agreement obtained between the experimental and numerical results demonstrated the rationality of this numerical model.

中文翻译:

增强织物对碳纤维织物-增强混凝土复合材料的高温和拉伸行为影响的中尺度数值模拟和表征

摘要 本文介绍了两种碳 TRC 复合材料在 25 °C 至 600 °C 高温下的直接拉伸行为的实验和中尺度建模结果。工厂生产了两种具有不同几何形状和处理产品的增强碳纤维织物,以提高织物/基体的粘合度。对于数值方法,数值模型的输入数据选自 TRC 组件材料(碳纤维织物、水泥基体)的实验结果。根据升高的温度水平,碳 TRC 具有不同相的应变硬化行为。此外,数值模型突出了试样表面横向裂纹的破坏模式,使用混凝土基体的裂纹损伤模型。通过与室温下获得的结果进行比较,确定并分析了升高温度对 TRC 行为和 TRC 性能的影响。通过比较两种碳 TRC 的实验结果,还可以强调和讨论增强织物对 TRC 复合材料热机械行为的影响。碳 TRC 在高温水平下的数值结果也与实验结果进行了比较。实验结果与数值结果吻合良好,证明了该数值模型的合理性。增强织物对 TRC 复合材料热机械行为的影响也可以强调和讨论。碳 TRC 在高温水平下的数值结果也与实验结果进行了比较。实验结果与数值结果吻合良好,证明了该数值模型的合理性。增强织物对 TRC 复合材料热机械行为的影响也可以强调和讨论。碳 TRC 在高温水平下的数值结果也与实验结果进行了比较。实验结果与数值结果吻合良好,证明了该数值模型的合理性。
更新日期:2020-09-01
down
wechat
bug