当前位置: X-MOL 学术Exp. Gerontol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance.
Experimental Gerontology ( IF 3.3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.exger.2020.111050
Andréia Abud da Silva Costa 1 , Renato Moraes 1 , Tibor Hortobágyi 2 , Andrew Sawers 3
Affiliation  

Healthy aging modifies neuromuscular control of dynamic balance. Challenging tasks could amplify such modifications, providing clinical insights. We examined the effects of age and walking condition difficulty on neuromuscular control of walking balance. We analyzed whole-body kinematics and activity of 13 right leg and trunk muscles in 17 young (11 males and 6 females; age 24 ± 3 years) and 14 older adults (3 males and 11 females; age 69 ± 4 years) while walking on a taped line on the floor and a 6-cm wide beam. Spatiotemporal parameters of gait, margin of stability, motor performance, and muscle synergies were estimated. Regardless of age, maintaining walking balance was more difficult on the beam compared to the taped line as evidenced by a shorter distance walked (17.3%), a reduction in step length (5.8%) and speed (10.3%), as well as a 40.0% smaller margin of stability during beam vs. tape walking. The number of muscle synergies was also higher during beam vs. tape walking. Compared to younger adults, older adults had larger margin of stability during beam walking. Older adults also had higher muscle co-activity within each muscle synergy and greater variance accounted for by the first muscle synergy regardless of condition. Such age-effects may be interpreted as a safer, less efficient, and less complex neuromuscular modular control strategy. In conclusion, beam walking increased the difficulty of maintaining walking balance and induced adaptations in modular control. It seems that healthy older adults reduce the complexity and efficiency of neuromuscular control of walking to preserve walking balance.



中文翻译:

老年人降低了神经肌肉控制的复杂性和效率,以保持步行平衡。

健康的衰老改变了神经肌肉对动态平衡的控制。具有挑战性的任务可能会放大此类修饰,提供临床见解。我们检查了年龄和步行条件难度对步行平衡神经肌肉控制的影响。我们分析了步行时17位年轻人(11位男性和6位女性;年龄24±3岁)和14位老年人(3位男性和11位女性;年龄69±4岁)的13个右腿和躯干肌肉的全身运动学和活动放在地板上的胶带线上,并有6厘米宽的横梁。估计了步态的时空参数,稳定性裕度,运动能力和肌肉协同作用。无论年龄大小,与带状线相比,保持横梁平衡都比较困难,这可以通过较短的步行距离(17.3%),步长(5.8%)和速度(10.3%)的减少以及40 相对于走带,束流期间的稳定性裕度小0%。束步与带步相比,肌肉协同作用的次数也更高。与年轻人相比,老年人在束步中稳定性更高。老年人在每个肌肉协同作用中还具有较高的肌肉协作能力,而不论状况如何,由第一肌肉协同作用引起的差异较大。这样的年龄效应可能被解释为一种更安全,更有效,更不复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。健康的老年人似乎降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。束步与带步相比,肌肉协同作用的次数也更高。与年轻人相比,老年人在束步中稳定性更高。老年人在每个肌肉协同作用中还具有较高的肌肉协作能力,而不论状况如何,由第一肌肉协同作用引起的差异较大。这样的年龄效应可能被解释为一种更安全,更有效,更不复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。健康的老年人似乎降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。束步与带步相比,肌肉协同作用的次数也更高。与年轻人相比,老年人在束步中稳定性更高。老年人在每个肌肉协同作用中还具有较高的肌肉协作能力,并且无论情况如何,由第一肌肉协同作用引起的差异较大。这样的年龄效应可能被解释为一种更安全,更有效,更不复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。健康的老年人似乎降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。老年人在步行时有较大的稳定性。老年人在每个肌肉协同作用中还具有较高的肌肉协作能力,并且无论情况如何,由第一肌肉协同作用引起的差异较大。这样的年龄效应可能被解释为一种更安全,更有效,更不复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。健康的老年人似乎降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。老年人在步行时有较大的稳定性。老年人在每个肌肉协同作用中还具有较高的肌肉协作能力,并且无论情况如何,由第一肌肉协同作用引起的差异较大。这样的年龄效应可能被解释为一种更安全,更有效,更不复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。健康的老年人似乎降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。和不太复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。健康的老年人似乎降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。和不太复杂的神经肌肉模块控制策略。总之,束流行走增加了保持行走平衡的困难,并增加了模块化控制的适应性。看起来健康的老年人降低了步行神经肌肉控制的复杂性和效率,以保持步行平衡。

更新日期:2020-08-25
down
wechat
bug