当前位置: X-MOL 学术Int. J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural Optimization of the Aircraft NACA Inlet Based on BP Neural Networks and Genetic Algorithms
International Journal of Aerospace Engineering ( IF 1.1 ) Pub Date : 2020-08-01 , DOI: 10.1155/2020/8857821
Zhimao Li 1, 2 , Changdong Chen 3 , Houju Pei 1 , Benben Kong 1
Affiliation  

With the development of the increasing demand for cooling air in cabin and electronic components on aircraft, it urges to present an energy-efficient optimum method for the ram air inlet system. A ram air performance evaluation method is proposed, and the main structural parameters can be extended to a certain type of aircraft. The influence of structural parameters on the ram air performance is studied, and a database for the performance is generated. A new method of integrating the BP neural networks and genetic algorithm is used for structure optimization and is proven effective. Moreover, the optimum result of the structure of the NACA ram air inlet system is deduced. Results show that (1) the optimization algorithm is efficient with less prediction error of the mass flow rate and fuel penalty. The average relative error of the mass flow rate is 1.37%, and the average relative error of the fuel penalty is 1.41% in the full samples. (2) Predicted deviation analysis shows very little difference between optimized and unoptimized design. The relative error of the mass flow rate is 0.080% while that of the fuel penalty is 0.083%. The accuracy of the proposed optimization method is proven. (3) The mass flow rate after optimization is increased to 2.506 kg/s, and the fuel penalty is decreased by 74.595 Et kg. The BP neural networks and genetic algorithms are studied to optimize the design of the ram air inlet system. It is proven to be a novel approach, and the efficiency can be highly improved.

中文翻译:

基于BP神经网络和遗传算法的飞机NACA进气道结构优化。

随着对飞机机舱和电子部件中冷却空气的需求不断增长,迫切需要为冲压进气系统提供一种节能的最佳方法。提出了一种冲压空气性能评估方法,其主要结构参数可以扩展到某类飞机。研究了结构参数对冲压空气性能的影响,并建立了性能数据库。将BP神经网络和遗传算法相集成的新方法用于结构优化,并被证明是有效的。此外,得出了NACA冲压空气进气系统结构的最佳结果。结果表明:(1)优化算法是有效的,质量流率和燃油损失的预测误差较小。在全部样品中,质量流量的平均相对误差为1.37%,燃油损失的平均相对误差为1.41%。(2)预测的偏差分析显示,优化和未优化设计之间的差异很小。质量流量的相对误差为0.080%,而燃料损失的相对误差为0.083%。证明了所提优化方法的准确性。(3)优化后的质量流量增加到2.506 kg / s,燃油损失减少74.595 Et kg。研究了BP神经网络和遗传算法,以优化冲压进气系统的设计。事实证明,这是一种新颖的方法,可以大大提高效率。(2)预测的偏差分析显示,优化和未优化设计之间的差异很小。质量流量的相对误差为0.080%,而燃料损失的相对误差为0.083%。证明了所提优化方法的准确性。(3)优化后的质量流量增加到2.506 kg / s,燃油损失减少74.595 Et kg。研究了BP神经网络和遗传算法,以优化冲压进气系统的设计。事实证明,这是一种新颖的方法,可以大大提高效率。(2)预测的偏差分析显示,优化和未优化设计之间的差异很小。质量流量的相对误差为0.080%,而燃料损失的相对误差为0.083%。证明了所提优化方法的准确性。(3)优化后的质量流量增加到2.506 kg / s,燃油损失减少74.595 Et kg。研究了BP神经网络和遗传算法,以优化冲压进气系统的设计。事实证明,这是一种新颖的方法,可以大大提高效率。燃油罚款减少了74.595 Et kg。研究了BP神经网络和遗传算法,以优化冲压进气系统的设计。事实证明,这是一种新颖的方法,可以大大提高效率。燃油罚款减少了74.595 Et kg。研究了BP神经网络和遗传算法,以优化冲压进气系统的设计。事实证明,这是一种新颖的方法,可以大大提高效率。
更新日期:2020-08-01
down
wechat
bug