当前位置: X-MOL 学术Phys. Plasmas › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of the periodical complementary dielectric-barrier discharge equipped with double-ring electrodes in atmospheric helium
Physics of Plasmas ( IF 2.0 ) Pub Date : 2020-07-01 , DOI: 10.1063/5.0009695
Jing Wang 1, 2 , Jing Li 1, 2 , Bingying Lei 1, 2 , Yufei Xing 1, 2 , Boping Xu 1, 2 , Yinghua Liu 1, 2 , Xinzhong Li 1, 2 , Yishan Wang 1, 2 , Jie Tang 1, 2 , Wei Zhao 1, 2 , Yixiang Duan 1, 2
Affiliation  

A two-dimensional fluid model was used to investigate the characteristics of helium dielectric-barrier discharge (DBD) equipped with double-ring electrodes at atmospheric pressure. Simulation results show that although the temporal evolutions of discharge current and current density at different radial positions exhibit the same or similar characteristics to those in traditional DBD, a distinctive spatial discharge structure is observed during the discharge process. The spatial distribution of electron density at current peak moments exhibits a periodical complementary feature between the center-advantage and the periphery-advantage with the inner ring electrode covering the radial axis from 0.5 to 1.0 mm. When the inner ring electrode covers the radial axis from 1.0 to 1.5 mm, the spatial distribution of electron density satisfies another periodical complementary behavior between the electrode-center-advantage and the coexistence of periphery-advantage and center-advantage. These complementary discharge features mainly result from non-uniform electric field and surface charge distribution at the end of the previous discharge. The difference of the discharge structure between the two cases is attributed to the fact that Laplacian field distributions are largely dependent on the arrangement of double-ring electrodes. Our observations show that electrode geometry plays an important role in the formation of the discharge structure.

中文翻译:

双环电极在常压氦气中周期性互补介质阻挡放电的数值研究

使用二维流体模型研究了配备双环电极的氦介质阻挡放电 (DBD) 在大气压下的特性。仿真结果表明,虽然不同径向位置的放电电流和电流密度的时间演变表现出与传统DBD相同或相似的特征,但在放电过程中观察到了独特的空间放电结构。电流峰值时刻电子密度的空间分布表现出中心优势和外围优势之间的周期性互补特征,内环电极覆盖径向轴0.5至1.0 mm。当内环电极覆盖径向轴 1.0 至 1.5 mm 时,电子密度的空间分布满足电极中心优势与外围优势与中心优势并存的另一种周期性互补行为。这些互补放电特征主要是由于前一次放电结束时电场和表面电荷分布不均匀造成的。两种情况之间放电结构的差异归因于拉普拉斯场分布在很大程度上取决于双环电极的排列这一事实。我们的观察表明,电极几何形状在放电结构的形成中起着重要作用。这些互补放电特征主要是由于前一次放电结束时电场和表面电荷分布不均匀造成的。两种情况之间放电结构的差异归因于拉普拉斯场分布在很大程度上取决于双环电极的排列这一事实。我们的观察表明,电极几何形状在放电结构的形成中起着重要作用。这些互补放电特征主要是由于前一次放电结束时电场和表面电荷分布不均匀造成的。两种情况之间放电结构的差异归因于拉普拉斯场分布在很大程度上取决于双环电极的排列这一事实。我们的观察表明,电极几何形状在放电结构的形成中起着重要作用。
更新日期:2020-07-01
down
wechat
bug