当前位置: X-MOL 学术Surf. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface engineering of personal protective equipments (PPEs) to prevent the contagious infections of SARS-CoV-2
Surface Engineering ( IF 2.4 ) Pub Date : 2020-08-01 , DOI: 10.1080/02670844.2020.1801034
Lalit M. Pandey 1
Affiliation  

ABSTRACT The outermost surfaces of Personal Protective Equipments (PPEs) interact with virus surface-protein as the first step during its transmission from aerosols and contacting surfaces, which can be tuned by surface engineering/modification. This report highlights the role of engineered surface chemistry of PPEs to avoid the spreading of the novel SARS-CoV-2 virus in hospitals. Physical properties of surfaces and spike-glycoprotein are correlated with the reported stability of SARS-CoV-2. The spike-protein is reported to be hydrophobic in nature with an isoelectric point of 5.9. Hence surface with both positive charge and hydrophobic groups are expected to achieve a strong binding with the surface spike-protein. Various surface engineering strategies of polypropylene and other materials with hybrid self-assembled monolayers and dopamine are discussed to design the mixed hydrophobic and charged surfaces. The strong surface-protein interactions may lead to severe conformational changes and destabilization of the viral envelope, which can disintegrate and inactivate the novel coronavirus.

中文翻译:

防止 SARS-CoV-2 传染性感染的个人防护设备 (PPE) 的表面工程

摘要 个人防护装备 (PPE) 的最外表面与病毒表面蛋白相互作用,这是病毒从气溶胶和接触表面传播的第一步,这可以通过表面工程/修饰进行调整。本报告强调了 PPE 的工程表面化学在避免新型 SARS-CoV-2 病毒在医院传播方面的作用。表面和刺突糖蛋白的物理特性与报道的 SARS-CoV-2 的稳定性相关。据报道,刺突蛋白本质上是疏水的,等电点为 5.9。因此,具有正电荷和疏水基团的表面有望实现与表面刺突蛋白的强结合。讨论了聚丙烯和其他具有混合自组装单分子层和多巴胺的材料的各种表面工程策略,以设计混合的疏水和带电表面。强烈的表面-蛋白质相互作用可能导致病毒包膜的严重构象变化和不稳定,从而使新型冠状病毒瓦解和失活。
更新日期:2020-08-01
down
wechat
bug