当前位置: X-MOL 学术Biol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics
Biological Reviews ( IF 11.0 ) Pub Date : 2020-07-31 , DOI: 10.1111/brv.12640
Melody S Clark 1 , Lloyd S Peck 1 , Jaison Arivalagan 2, 3 , Thierry Backeljau 4, 5 , Sophie Berland 6 , Joao C R Cardoso 7 , Carlos Caurcel 8 , Gauthier Chapelle 4 , Michele De Noia 9, 10 , Sam Dupont 11 , Karim Gharbi 8 , Joseph I Hoffman 9 , Kim S Last 12 , Arul Marie 2 , Frank Melzner 13 , Kati Michalek 12 , James Morris 4 , Deborah M Power 7 , Kirti Ramesh 13 , Trystan Sanders 13 , Kirsikka Sillanpää 14 , Victoria A Sleight 15 , Phoebe J Stewart-Sinclair 12 , Kristina Sundell 14 , Luca Telesca 16 , David L J Vendrami 9 , Alexander Ventura 11 , Thomas A Wilding 12 , Tejaswi Yarra 1, 8 , Elizabeth M Harper 16
Affiliation  

Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO3 crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site‐associated DNA sequencing (RAD‐Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD‐Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade‐offs in animal metabolism. The cellular costs are still debated, with CaCO3 precipitation estimates ranging from 1–2 J/mg to 17–55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (~29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage‐specific proteins and unique combinations of co‐opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes for in situ localization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats ‐ CRISPR‐associated protein 9 (CRISPR‐Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite‐binding) protein plays a significant role in structured nacre crystal growth and that the Lsdia1 gene sets shell chirality in Lymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future‐proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.

中文翻译:

破译软体动物壳生产:遗传机制在生态学、水产养殖和仿生学中的作用

大多数软体动物都有壳,由大量的微结构和结构构成。完全形成的壳由方解石或文石组成。这些 CaCO3 晶体与蛋白质形成复杂的生物复合材料,虽然蛋白质通常不到总壳质量的 5%,但在确定壳微观结构方面发挥着重要作用。尽管进行了大量研究,但在软体动物如何构建和维护它们的外壳以及它们如何产生如此多样的形式方面仍然存在巨大的知识差距。在这里,我们综合了关于壳的形状、微观结构、组成和有机含量如何在物种之间和物种内部响应众多生物和非生物因素而变化的结果。在地方层面,温度、食物供应和捕食线索显着影响贝壳形态,而盐度对跨纬度的影响要大得多。而且,我们强调基因组技术[例如限制性位点相关 DNA 测序 (RAD-Seq) 和表观遗传学] 的进步如何允许详细检查形态变化是由表型可塑性还是遗传适应或这些的组合引起的。RAD-Seq 已经确定了与温度和水产养殖实践相关的单核苷酸多态性,而表观遗传过程已显着改变外壳构造以适应当地条件,例如南极洲和新西兰。我们还综合了壳构建成本的结果,并探讨了这些结果如何影响动物代谢中的能量权衡。细胞成本仍然存在争议,根据实验和环境条件,CaCO3 降水估计值从 1-2 J/mg 到 17-55 J/mg 不等。然而,有机成分更昂贵 (~29 J/mg),最近的数据表明跨膜钙离子转运蛋白可能涉及相当大的成本。这篇综述强调了分子分析在证明生物矿化基因的多个进化起源方面所发挥的作用。尽管它们的特点是谱系特异性蛋白质和共同选择基因的独特组合,但一小组蛋白质结构域已被确定为保守的生物矿化工具箱。我们进一步强调使用序列数据集为原位定位和蛋白质功能研究提供候选基因。前者阐明了地幔组织中的基因表达模块,提高了对壳形态合成多样性的理解。RNA 干扰 (RNAi) 和成簇的规则散布的短回文重复序列 - CRISPR 相关蛋白 9 (CRISPR-Cas9) 实验为用于软体动物基因序列的功能研究提供了概念证明,例如显示 Pif(文石结合)蛋白质在结构化珍珠层晶体生长中起重要作用,并且 Lsdia1 基因在 Lymnaea stagnalis 中设置壳手性。许多研究都集中在海洋酸化对软体动物的影响上。最初的研究主要对未来的软体动物生物多样性持悲观态度。然而,包括选择性育种和多代在内的更复杂的实验正在确定微妙的影响,并且软体动物基因组内的可变性具有适应未来条件的潜力。此外,我们强调最近基于博物馆藏品的历史研究表明,与实验数据相比,软体动物对气候变化的适应能力更强。软体动物研究的未来不仅在于对生物多样性的生态调查,而且这篇综述综合了跨学科的知识来理解生物矿化。它涵盖的研究范围从进化和发展,到生物多样性前景的预测和水产养殖的未来证明,再到确定新的仿生机会和回收贝壳产品的社会效益。这篇综述综合了跨学科的知识来理解生物矿化。它涵盖的研究范围从进化和发展,到生物多样性前景的预测和水产养殖的未来证明,再到确定新的仿生机会和回收贝壳产品的社会效益。这篇综述综合了跨学科的知识来理解生物矿化。它涵盖的研究范围从进化和发展,到生物多样性前景的预测和水产养殖的未来证明,再到确定新的仿生机会和回收贝壳产品的社会效益。
更新日期:2020-07-31
down
wechat
bug