当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Human–Robot co-manipulation during surface tooling: A general framework based on impedance control, haptic rendering and discrete geometry
Robotics and Computer-Integrated Manufacturing ( IF 9.1 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.rcim.2020.102033
Sreekanth Kana , Keng-Peng Tee , Domenico Campolo

Despite the advancements in machine learning and artificial intelligence, there are many tooling tasks with cognitive aspects that are rather challenging for robots to handle in full autonomy, thus still requiring a certain degree of interaction with a human operator. In this paper, we propose a theoretical framework for both planning and execution of robot-surface contact tasks whereby interaction with a human operator can be accommodated to a variable degree.

The starting point is the geometry of surface, which we assume known and available in a discretized format, e.g. through scanning technologies. To allow for realtime computation, rather than interacting with thousands of vertices, the robot only interacts with a single proxy, i.e. a massless virtual object constrained to ‘live on’ the surface and subject to first order viscous dynamics. The proxy and an impedance-controlled robot are then connected through tuneable and possibly viscoelastic coupling, i.e. (virtual) springs and dampers. On the one hand, the proxy slides along discrete geodesics of the surface in response to both viscoelastic coupling with the robot and to a possible external force (a virtual force which can be used to induce autonomous behaviours). On the other hand, the robot is free to move in 3D in reaction to the same viscoelastic coupling as well as to a possible external force, which includes an actual force exerted by a human operator. The proposed approach is multi-objective in the sense that different operational (autonomous/collaborative) and interactive (for contact/non-contact tasks) modalities can be realized by simply modulating the viscoelastic coupling as well as virtual and physical external forces. We believe that our proposed framework might lead to a more intuitive interfacing to robot programming, as opposed to standard coding. To this end, we also present numerical and experimental studies demonstrating path planning as well as autonomous and collaborative interaction for contact tasks with a free-form surface.



中文翻译:

表面加工过程中的人机共生:基于阻抗控制,触觉渲染和离散几何的通用框架

尽管在机器学习和人工智能方面取得了进步,但是许多具有认知方面的工具任务对于机器人完全自主地处理来说是非常具有挑战性的,因此仍然需要与操作员进行一定程度的交互。在本文中,我们提出了一个计划和执行机器人表面接触任务的理论框架,从而可以在不同程度上适应与操作员的互动。

起点是表面的几何形状,我们假设它是已知的并且可以离散的格式(例如通过扫描技术)获得。为了进行实时计算,而不是与数千个顶点进行交互,该机器人仅与单个代理进行交互,即,一个无质量的虚拟对象被约束为“生活”在表面上并经受一阶粘性动力学。然后,代理服务器和阻抗受控的机器人通过可调谐的和可能的粘弹性耦合(即(虚拟)弹簧和阻尼器)连接。一方面,响应于与机器人的粘弹性耦合以及可能的外力(可用于诱发自主行为的虚拟力),代理沿着表面的离散测地线滑动。另一方面,机器人可以在相同的粘弹性耦合以及可能的外力(包括由操作人员施加的实际力)的作用下自由地以3D方式运动。所提出的方法是多目标的,可以通过简单地调节粘弹性耦合以及虚拟和物理外力来实现不同的操作(自主/协作)和交互(针对接触/非接触任务)方式。我们认为,与标准编码相比,我们提出的框架可能会导致与机器人编程更直观的接口。为此,我们还提供了数值和实验研究,展示了路径规划以及与自由曲面接触任务的自主和协作交互。其中包括操作人员施加的实际力。所提出的方法是多目标的,可以通过简单地调节粘弹性耦合以及虚拟和物理外力来实现不同的操作(自主/协作)和交互(针对接触/非接触任务)方式。我们认为,与标准编码相比,我们提出的框架可能会导致与机器人编程更直观的接口。为此,我们还提供了数值和实验研究,展示了路径规划以及与自由曲面接触任务的自主和协作交互。其中包括操作人员施加的实际力。所提出的方法是多目标的,可以通过简单地调节粘弹性耦合以及虚拟和物理外力来实现不同的操作(自主/协作)和交互(针对接触/非接触任务)方式。我们认为,与标准编码相比,我们提出的框架可能会导致与机器人编程更直观的接口。为此,我们还将提供数值和实验研究,以证明路径规划以及与自由曲面接触任务的自主和协作交互。所提出的方法是多目标的,可以通过简单地调节粘弹性耦合以及虚拟和物理外力来实现不同的操作(自主/协作)和交互(针对接触/非接触任务)方式。我们认为,与标准编码相比,我们提出的框架可能会导致与机器人编程更直观的接口。为此,我们还提供了数值和实验研究,展示了路径规划以及与自由曲面接触任务的自主和协作交互。所提出的方法是多目标的,可以通过简单地调节粘弹性耦合以及虚拟和物理外力来实现不同的操作(自主/协作)和交互(针对接触/非接触任务)方式。我们认为,与标准编码相比,我们提出的框架可能会导致与机器人编程更直观的接口。为此,我们还将提供数值和实验研究,以证明路径规划以及与自由曲面接触任务的自主和协作交互。

更新日期:2020-08-01
down
wechat
bug