当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Comparative Analysis of Image Classification Algorithms Based on Traditional Machine Learning and Deep Learning
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.patrec.2020.07.042
Pin Wang; En Fan; Peng Wang

Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets.

更新日期:2020-08-01

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug