当前位置: X-MOL 学术Appl. Radiat. Isot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microdosimetric calculations for radionuclides emitting β and α particles and Auger electrons.
Applied Radiation and Isotopes ( IF 1.6 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.apradiso.2020.109302
Baljeet Seniwal 1 , Mario A Bernal 2 , Telma C F Fonseca 1
Affiliation  

This work focuses on the calculation of S-values and radial energy profiles for radionuclides emitting high (Y-90, Sr-89), medium (Re-186, Sm-153) and low-energy (Er-169, Lu-177) β-particles, Auger electrons (In-111, Ga-67, I-123) and α-particles (At-211, Ac-225). Simulations were performed using the EGSnrc and GEANT4-DNA Monte Carlo (MC) codes for a spherical cell geometry. S-values were computed using decay spectra available in literature for Tc-99m and In-111. To investigate the effect on S-value when the same emission spectrum is used in two different MC codes. Internal modules of the MC codes were used to simulate the decay of other radionuclides mentioned above. Radial energy profiles for uniformly distributed radioactive sources in the cell nucleus and cytoplasm were calculated and results were compared with the literature. For S-values calculated using the same emission spectrum, the results showed good agreement with each other and with the literature. Whereas, the S-values calculated using the internal decay data of the MC codes, for instance, for Ga-67 and Y-90, showed discrepancies up to 40%. Radial energy profiles were also different from those reported in the literature. Our results show that well validated radiation emission spectra must be used for such calculations and internal decay spectra of MC codes should be used with caution. The normalized probability density functions must be used to sample points uniformly into spherical volumes and the methodology proposed here can be used to correctly determine radial energy profiles.



中文翻译:

发射β和α粒子以及俄歇电子的放射性核素的微剂量计算。

这项工作的重点是发射高(Y-90,Sr-89),中(Re-186,Sm-153)和低能(Er-169,Lu-177)的放射性核素的S值和径向能量分布的计算)β粒子,俄歇电子(In-111,Ga-67,I-123)和α粒子(At-211,Ac-225)。使用EGSnrc和GEANT4-DNA蒙特卡罗(MC)代码对球形细胞几何结构进行了仿真。使用Tc-99m和In-111的文献中可用的衰减光谱计算S值。为了研究在两个不同的MC代码中使用相同的发射光谱时对S值的影响。MC代码的内部模块用于模拟上述其他放射性核素的衰减。计算了在细胞核和细胞质中均匀分布的放射源的径向能谱,并将结果与​​文献进行了比较。对于使用相同发射光谱计算出的S值,结果相互之间以及与文献均显示出良好的一致性。而使用MC代码的内部衰减数据(例如,对于Ga-67和Y-90)计算出的S值显示出高达40%的差异。径向能量分布也与文献报道的不同。我们的结果表明,必须使用经过充分验证的辐射发射光谱进行此类计算,并且应谨慎使用MC代码的内部衰减光谱。必须使用归一化的概率密度函数将点均匀采样到球形体积中,并且此处提出的方法可用于正确确定径向能量分布。使用MC代码的内部衰减数据(例如,对于Ga-67和Y-90)计算出的S值显示出高达40%的差异。径向能量分布也与文献报道的不同。我们的结果表明,必须使用经过充分验证的辐射发射光谱进行此类计算,并且应谨慎使用MC代码的内部衰减光谱。必须使用归一化的概率密度函数将点均匀采样到球形体积中,并且此处提出的方法可用于正确确定径向能量分布。使用MC代码的内部衰减数据(例如,对于Ga-67和Y-90)计算出的S值显示出高达40%的差异。径向能谱也与文献报道的不同。我们的结果表明,必须使用经过充分验证的辐射发射光谱进行此类计算,并且应谨慎使用MC代码的内部衰减光谱。必须使用归一化的概率密度函数将点均匀采样到球形体积中,并且此处提出的方法可用于正确确定径向能量分布。我们的结果表明,必须使用经过充分验证的辐射发射光谱进行此类计算,并且应谨慎使用MC代码的内部衰减光谱。必须使用归一化的概率密度函数将点均匀采样到球形体积中,并且此处提出的方法可用于正确确定径向能量分布。我们的结果表明,必须使用经过充分验证的辐射发射光谱进行此类计算,并且应谨慎使用MC代码的内部衰减光谱。必须使用归一化的概率密度函数将点均匀采样到球形体积中,并且此处提出的方法可用于正确确定径向能量分布。

更新日期:2020-08-01
down
wechat
bug