当前位置: X-MOL 学术J. Sol-Gel Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered surface properties of MAPI using different antisolvents for hole transport layer-free perovskite solar cell (HTL-free PSC)
Journal of Sol-Gel Science and Technology ( IF 2.3 ) Pub Date : 2020-08-01 , DOI: 10.1007/s10971-020-05380-2
Ali K. Al-Mousoi , Mustafa K. A. Mohammed

Perovskite solar cells (PSCs) have attained considerable success within just a few recent years. This accomplishment is critically based on compositional modifications and morphology engineering of perovskite material or dependent upon prepared mesoporous-titanium dioxide (mp-TiO2). However, no analysis of the antisolvent role used for crystallization of perovskite has been undertaken. Herein, we investigated the role of the antisolvent in the performance of hole transport layer (HTL)-free PSC (HTL-free PSC) based on the following sandwich structure: glass/fluorine-doped tin oxide (FTO)/compact-TiO2 (c-TiO2)/mp-TiO2/Perovskite (MAPI)/gold (Au). We studied perovskite layers with various porosities and layer thicknesses, and revealed that the generated pinholes had a major effect on the HTL-free PSC performance. A possible reason for this is that the pinhole in the MAPI layer does not allow the MAPI crystals to generate charge pathways to the TiO2 layer. The MAPI layer prepared by chlorobenzene demonstrated a compact and pinhole-free highly crystalline MAPI layer with enhanced optical and electrical characteristics. However, the MAPI layers prepared by toluene and diethyl ether suffered from severe recombination issues at the MAPI/TiO2 interconnect. The dark current/voltage (JV) curve of the HTL-free PSC prepared using chlorobenzene shifted to higher voltage, suggesting a reduction of the backflow of charges at the interface. The JV characteristics under illumination proved that the HTL-free PSC fabricated by chlorobenzene using as antisolvent in this study, had the best power conversion efficiency (PCE) of 5.65% along with open circuit voltage (Voc), short circuit current (Jsc), and fill factor (FF) values of 0.8335 V, 11.964 mA/cm2, and 0.56, respectively.

The enhancement in the performance of PSCs originates from improved perovskite film formation, more efficient electron charge extraction and reduced recombination process.



中文翻译:

使用无溶剂的无钙钛矿钙钛矿型太阳能电池(无HTL的PSC)的不同抗溶剂的MAPI的工程表面特性

钙钛矿太阳能电池(PSC)在短短几年内就取得了相当大的成功。该成就至关重要地基于钙钛矿材料的组成修改和形态工程,或取决于所制备的中孔二氧化钛(mp-TiO 2)。然而,尚未对用于钙钛矿结晶的抗溶剂作用进行分析。在本文中,我们基于以下夹层结构研究了抗溶剂在无空穴传输层(HTL)的PSC(无HTL的PSC)的性能中的作用:玻璃/掺杂氟的氧化锡(FTO)/紧凑型TiO 2(c-TiO 2) / mp-TiO 2/钙钛矿(MAPI)/黄金(Au)。我们研究了具有不同孔隙率和层厚度的钙钛矿层,并发现所产生的针孔对无HTL的PSC性能有重大影响。其可能的原因是,MAPI层中的针孔不允许MAPI晶体生成通往TiO 2层的电荷通道。由氯苯制备的MAPI层显示出致密的,无针孔的高度结晶MAPI层,具有增强的光学和电学特性。然而,由甲苯和乙醚制备的MAPI层在MAPI / TiO 2互连处遭受严重的重组问题。暗电流/电压(JV)使用氯苯制备的不含HTL的PSC曲线移至较高电压,表明界面电荷的回流减少。光照下的JV特性证明,本研究中以氯苯为反溶剂制备的无HTL的PSC具有5.65%的最佳功率转换效率(PCE),以及开路电压(V oc),短路电流(J sc)和填充因子(FF)分别为0.8335 V,11.964 mA / cm 2和0.56。

PSC性能的提高源自钙钛矿膜形成的改善,电子电荷的提取效率更高以及重组过程减少。

更新日期:2020-08-01
down
wechat
bug