当前位置: X-MOL 学术Auton. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable time-constrained planning of multi-robot systems
Autonomous Robots ( IF 3.7 ) Pub Date : 2020-07-31 , DOI: 10.1007/s10514-020-09937-6
Alexandros Nikou , Shahab Heshmati-alamdari , Dimos V. Dimarogonas

This paper presents a scalable procedure for time-constrained planning of a class of uncertain nonlinear multi-robot systems. In particular, we consider N robotic agents operating in a workspace which contains regions of interest (RoI), in which atomic propositions for each robot are assigned. The main goal is to design decentralized and robust control laws so that each robot meets an individual high-level specification given as a metric interval temporal logic (MITL), while using only local information based on a limited sensing radius. Furthermore, the robots need to fulfill certain desired transient constraints such as collision avoidance between them. The controllers, which guarantee the transition between regions, consist of two terms: a nominal control input, which is computed online and is the solution of a decentralized finite-horizon optimal control problem (DFHOCP); and an additive state feedback law which is computed offline and guarantees that the real trajectories of the system will belong to a hyper-tube centered along the nominal trajectory. The controllers serve as actions for the individual weighted transition system (WTS) of each robot, and the time duration required for the transition between regions is modeled by a weight. The DFHOCP is solved at every sampling time by each robot and then necessary information is exchanged between neighboring robots. The proposed approach is scalable since it does not require a product computation among the WTS of the robots. The proposed framework is experimentally tested and the results show that the proposed framework is promising for solving real-life robotic as well as industrial applications.



中文翻译:

可扩展的受时间限制的多机器人系统规划

本文为一类不确定的非线性多机器人系统的时间约束规划提出了一种可扩展的程序。特别地,我们考虑N在包含感兴趣区域(RoI)的工作空间中操作的机器人代理,其中分配了每个机器人的原子命题。主要目标是设计分散且鲁棒的控制律,以使每个机器人都满足作为度量间隔时间逻辑(MITL)给出的单独的高级规范,同时仅使用基于有限感测半径的本地信息。此外,机器人需要满足某些所需的瞬态约束,例如它们之间的避免碰撞。保证区域之间过渡的控制器由两部分组成:名义控制输入,该输入是在线计算的,是分散的有限水平最优控制问题(DFHOCP)的解决方案;以及可离线计算的加性状态反馈定律,该定律可保证系统的真实轨迹属于以标称轨迹为中心的超管。控制器充当每个机器人的单独加权过渡系统(WTS)的动作,区域之间过渡所需的持续时间由权重建模。DFHOCP在每个采样时间由每个机器人解决,然后在相邻的机器人之间交换必要的信息。所提出的方法是可扩展的,因为它不需要机器人的WTS之间的乘积计算。对该框架进行了实验测试,结果表明该框架有望解决现实生活中的机器人以及工业应用。控制器充当每个机器人的单独加权过渡系统(WTS)的动作,区域之间过渡所需的持续时间由权重建模。DFHOCP在每个采样时间由每个机器人解决,然后在相邻的机器人之间交换必要的信息。所提出的方法是可扩展的,因为它不需要机器人的WTS之间的乘积计算。对该框架进行了实验测试,结果表明该框架有望解决现实生活中的机器人以及工业应用。控制器充当每个机器人的单独加权过渡系统(WTS)的动作,区域之间过渡所需的持续时间由权重建模。DFHOCP在每个采样时间由每个机器人解决,然后在相邻的机器人之间交换必要的信息。所提出的方法是可扩展的,因为它不需要机器人的WTS之间的乘积计算。对该框架进行了实验测试,结果表明该框架有望解决现实生活中的机器人以及工业应用。DFHOCP在每个采样时间由每个机器人解决,然后在相邻的机器人之间交换必要的信息。所提出的方法是可扩展的,因为它不需要机器人的WTS之间的乘积计算。对该框架进行了实验测试,结果表明该框架有望解决现实生活中的机器人以及工业应用。DFHOCP在每个采样时间由每个机器人解决,然后在相邻的机器人之间交换必要的信息。所提出的方法是可扩展的,因为它不需要机器人的WTS之间的乘积计算。对该框架进行了实验测试,结果表明该框架有望解决现实生活中的机器人以及工业应用。

更新日期:2020-08-01
down
wechat
bug