当前位置: X-MOL 学术Int. J. Green Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
PCM thermal conductivity effect on mechanism of PV/PCM thermal control characteristics
International Journal of Green Energy ( IF 3.1 ) Pub Date : 2020-07-30 , DOI: 10.1080/15435075.2020.1798769
Yongtai He 1 , Lixian Xiao 1 , Yaohua Yang 1 , Jingqiu Wang 1
Affiliation  

According to the structure of photovoltaic/phase change material (PV/PCM), the mechanism of internal heat transfer, transmission, storage, and temperature control is analyzed, and a two-dimensional finite element analysis model of PV/PCM structure is established. This study is carried out on the effect of PCM thermal conductivity on internal temperature distribution characteristics of PV/PCM and temperature control characteristics of solar cells. The results show that the increase in thermal conductivity of PCM can prolong the temperature control time of solar cell in PV/PCM system, for example, when the thermal conductivity is increased from 0.2 W/(m·K) to1.5 W/(m·K) under a thickness of 4 cm, the duration when PV/PCM solar cell temperature is controlled below 40°C and extended from 52 min to 184 min. In addition, PV/PCM experimental prototypes are designed with the LA-SA-EG composite PCM peak melting point of 46°C and thermal conductivity of 0.8 W/(m·K) and 1.1 W/(m·K), respectively. The results indicate that compared with PCM-free solar cells, the maximum temperature of PV/PCM prototype solar cells with thermal conductivity of 0.8 W/(m·K) and 1.1 W/(m·K) is reduced by 10.8°C and 4.6°C, respectively, with average output power increased by 4.1% and 2.2%, respectively, under simulated light sources. Under natural light conditions, the average output power is increased by 6.9% and 4.3%, respectively. The results provide theoretical and experimental basis for the optimization of PV/PCM design by changing the thermal conductivity of PCM.



中文翻译:

PCM导热系数对PV / PCM热控制特性机理的影响

根据光伏/相变材料(PV / PCM)的结构,分析了内部传热,传递,存储和温度控制的机理,建立了PV / PCM结构的二维有限元分析模型。这项研究是针对PCM热导率对PV / PCM内部温度分布特性和太阳能电池温度控制特性的影响而进行的。结果表明,PCM的导热系数的增加可以延长PV / PCM系统中太阳能电池的温度控制时间,例如,当导热系数从0.2 W /(m·K)增加到1.5 W /( m·K)在4 cm的厚度下,将PV / PCM太阳能电池温度控制在40°C以下并从52分钟延长到184分钟的持续时间。此外,PV / PCM实验原型设计为LA-SA-EG复合PCM峰值熔点为46°C,热导率分别为0.8 W /(m·K)和1.1 W /(m·K)。结果表明,与不含PCM的太阳能电池相比,热导率分别为0.8 W /(m·K)和1.1 W /(m·K)的PV / PCM原型太阳能电池的最高温度降低了10.8°C,并且在模拟光源下,温度分别为4.6°C和平均输出功率分别增加4.1%和2.2%。在自然光条件下,平均输出功率分别增加了6.9%和4.3%。研究结果为改变PCM的热导率提供了优化PV / PCM设计的理论和实验基础。分别。结果表明,与不含PCM的太阳能电池相比,热导率分别为0.8 W /(m·K)和1.1 W /(m·K)的PV / PCM原型太阳能电池的最高温度降低了10.8°C,并且在模拟光源下,温度分别为4.6°C和平均输出功率分别增加4.1%和2.2%。在自然光条件下,平均输出功率分别增加了6.9%和4.3%。研究结果为改变PCM的热导率提供了优化PV / PCM设计的理论和实验基础。分别。结果表明,与不含PCM的太阳能电池相比,热导率分别为0.8 W /(m·K)和1.1 W /(m·K)的PV / PCM原型太阳能电池的最高温度降低了10.8°C,并且在模拟光源下,温度分别为4.6°C和平均输出功率分别增加4.1%和2.2%。在自然光条件下,平均输出功率分别增加了6.9%和4.3%。研究结果为改变PCM的热导率提供了优化PV / PCM设计的理论和实验基础。在模拟光源下分别为2%。在自然光条件下,平均输出功率分别增加了6.9%和4.3%。研究结果为改变PCM的热导率提供了优化PV / PCM设计的理论和实验基础。在模拟光源下分别为2%。在自然光条件下,平均输出功率分别增加了6.9%和4.3%。通过改变PCM的导热系数,为PV / PCM设计的优化提供了理论和实验依据。

更新日期:2020-08-26
down
wechat
bug