当前位置: X-MOL 学术Front. Bioeng. Biotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms
Frontiers in Bioengineering and Biotechnology ( IF 4.3 ) Pub Date : 2020-07-31 , DOI: 10.3389/fbioe.2020.00871
Andika Sidar 1, 2 , Erica D Albuquerque 1, 3 , Gerben P Voshol 1, 4 , Arthur F J Ram 1 , Erik Vijgenboom 1 , Peter J Punt 1, 4
Affiliation  

Enzymatic degradation of abundant renewable polysaccharides such as cellulose and starch is a field that has the attention of both the industrial and scientific community. Most of the polysaccharide degrading enzymes are classified into several glycoside hydrolase families. They are often organized in a modular manner which includes a catalytic domain connected to one or more carbohydrate-binding modules. The carbohydrate-binding modules (CBM) have been shown to increase the proximity of the enzyme to its substrate, especially for insoluble substrates. Therefore, these modules are considered to enhance enzymatic hydrolysis. These properties have played an important role in many biotechnological applications with the aim to improve the efficiency of polysaccharide degradation. The domain organization of glycoside hydrolases (GHs) equipped with one or more CBM does vary within organisms. This review comprehensively highlights the presence of CBM as ancillary modules and explores the diversity of GHs carrying one or more of these modules that actively act either on cellulose or starch. Special emphasis is given to the cellulase and amylase distribution within the filamentous microorganisms from the genera of Streptomyces and Aspergillus that are well known to have a great capacity for secreting a wide range of these polysaccharide degrading enzyme. The potential of the CBM and other ancillary domains for the design of improved polysaccharide decomposing enzymes is discussed.

中文翻译:

碳水化合物结合模块:来自丝状微生物的淀粉酶和纤维素酶结构域结构的多样性

纤维素和淀粉等丰富的可再生多糖的酶促降解是一个受到工业界和科学界共同关注的领域。大多数多糖降解酶分为几个糖苷水解酶家族。它们通常以模块化方式组织,其中包括连接到一个或多个碳水化合物结合模块的催化域。碳水化合物结合模块 (CBM) 已被证明可以增加酶与其底物的接近度,尤其是对于不溶性底物。因此,这些模块被认为可以增强酶水解。这些特性在许多旨在提高多糖降解效率的生物技术应用中发挥了重要作用。配备一种或多种 CBM 的糖苷水解酶 (GH) 的结构域组织在生物体内确实不同。本综述全面强调了 CBM 作为辅助模块的存在,并探讨了携带一个或多个这些模块的 GH 的多样性,这些模块积极作用于纤维素或淀粉。特别强调了来自链霉菌属和曲霉属的丝状微生物中纤维素酶和淀粉酶的分布,众所周知,这些微生物具有大量分泌这些多糖降解酶的能力。讨论了 CBM 和其他辅助结构域在设计改进的多糖分解酶方面的潜力。本综述全面强调了 CBM 作为辅助模块的存在,并探讨了携带一个或多个这些模块的 GH 的多样性,这些模块积极作用于纤维素或淀粉。特别强调了来自链霉菌属和曲霉属的丝状微生物中纤维素酶和淀粉酶的分布,众所周知,这些微生物具有大量分泌这些多糖降解酶的能力。讨论了 CBM 和其他辅助结构域在设计改进的多糖分解酶方面的潜力。本综述全面强调了 CBM 作为辅助模块的存在,并探讨了携带一个或多个这些模块的 GH 的多样性,这些模块积极作用于纤维素或淀粉。特别强调了来自链霉菌属和曲霉属的丝状微生物中纤维素酶和淀粉酶的分布,众所周知,这些微生物具有大量分泌这些多糖降解酶的能力。讨论了 CBM 和其他辅助结构域在设计改进的多糖分解酶方面的潜力。特别强调了来自链霉菌属和曲霉属的丝状微生物中纤维素酶和淀粉酶的分布,众所周知,这些微生物具有大量分泌这些多糖降解酶的能力。讨论了 CBM 和其他辅助结构域在设计改进的多糖分解酶方面的潜力。特别强调了来自链霉菌属和曲霉属的丝状微生物中纤维素酶和淀粉酶的分布,众所周知,这些微生物具有大量分泌这些多糖降解酶的能力。讨论了 CBM 和其他辅助结构域在设计改进的多糖分解酶方面的潜力。
更新日期:2020-07-31
down
wechat
bug