当前位置: X-MOL 学术Brain Behav. Evol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Allometric Scaling Rules of the Cerebellum in Galliform Birds.
Brain, Behavior and Evolution ( IF 2.1 ) Pub Date : 2020-07-31 , DOI: 10.1159/000509069
Felipe Cunha 1 , Kelsey Racicot 2 , Janae Nahirney 2 , Courtney Heuston 2 , Douglas R Wylie 3 , Andrew N Iwaniuk 2
Affiliation  

Although the internal circuitry of the cerebellum is highly conserved across vertebrate species, the size and shape of the cerebellum varies considerably. Recent comparative studies have examined the allometric rules between cerebellar mass and number of neurons, but data are lacking on the numbers and sizes of Purkinje and granule cells or scaling of cerebellar foliation. Here, we investigate the allometric rules that govern variation in the volumes of the layers of the cerebellum, the numbers and sizes of Purkinje cells and granule cells and the degree of the cerebellar foliation across 7 species of galliform birds. We selected Galliformes because they vary greatly in body and brain sizes. Our results show that the molecular, granule and white matter layers all increase in volume at the same rate relative to total cerebellum volume. Both numbers and sizes of Purkinje cells increased with cerebellar volume, but numbers of Purkinje cells increased at a much faster rate than size. Granule cell numbers increased with cerebellar volume, but size did not. Sizes and numbers of Purkinje cells as well as numbers of granule cells were positively correlated with the degree of cerebellar foliation, but granule cell size decreased with higher degrees of foliation. The concerted changes among the volumes of cerebellar layers likely reflects the conserved neural circuitry of the cerebellum. Also, our data indicate that the scaling of cell sizes can vary markedly across neuronal populations, suggesting that evolutionary changes in cell sizes might be more complex than what is often assumed.
Brain Behav Evol


中文翻译:

鸡形鸟类小脑的异速缩放规则。

尽管小脑的内部回路在脊椎动物物种中高度保守,但小脑的大小和形状差异很大。最近的比较研究已经检查了小脑质量和神经元数量之间的异速生长规律,但缺乏关于浦肯野和颗粒细胞的数量和大小或小脑叶的缩放的数据。在这里,我们研究了控制小脑层体积变化的异速生长规则,浦肯野细胞和颗粒细胞的数量和大小以及 7 种鸡形鸟类的小脑叶理程度。我们选择鸡形目是因为它们的身体和大脑大小差异很大。我们的结果表明,相对于总小脑体积,分子、颗粒和白质层的体积都以相同的速度增加。浦肯野细胞的数量和大小都随着小脑体积的增加而增加,但浦肯野细胞的数量增加速度比大小快得多。颗粒细胞数量随着小脑体积而增加,但大小没有增加。浦肯野细胞的大小和数量以及颗粒细胞的数量与小脑叶理程度呈正相关,但颗粒细胞大小随叶理程度的提高而减小。小脑层体积之间的协调变化可能反映了小脑的保守神经回路。此外,我们的数据表明,细胞大小的比例可能因神经元群体而异,这表明细胞大小的进化变化可能比通常假设的更复杂。但浦肯野细胞的数量增加速度比大小快得多。颗粒细胞数量随着小脑体积而增加,但大小没有增加。浦肯野细胞的大小和数量以及颗粒细胞的数量与小脑叶理程度呈正相关,但颗粒细胞大小随叶理程度的提高而减小。小脑层体积之间的协调变化可能反映了小脑的保守神经回路。此外,我们的数据表明,细胞大小的比例可能因神经元群体而异,这表明细胞大小的进化变化可能比通常假设的更复杂。但浦肯野细胞的数量增加速度比大小快得多。颗粒细胞数量随着小脑体积而增加,但大小没有增加。浦肯野细胞的大小和数量以及颗粒细胞的数量与小脑叶理程度呈正相关,但颗粒细胞大小随叶理程度的提高而减小。小脑层体积之间的协调变化可能反映了小脑的保守神经回路。此外,我们的数据表明,细胞大小的比例可能因神经元群体而异,这表明细胞大小的进化变化可能比通常假设的更复杂。浦肯野细胞的大小和数量以及颗粒细胞的数量与小脑叶理程度呈正相关,但颗粒细胞大小随叶理程度的提高而减小。小脑层体积之间的协调变化可能反映了小脑的保守神经回路。此外,我们的数据表明,细胞大小的比例可能因神经元群体而异,这表明细胞大小的进化变化可能比通常假设的更复杂。浦肯野细胞的大小和数量以及颗粒细胞的数量与小脑叶理程度呈正相关,但颗粒细胞大小随叶理程度的提高而减小。小脑层体积之间的协调变化可能反映了小脑的保守神经回路。此外,我们的数据表明,细胞大小的比例可能因神经元群体而异,这表明细胞大小的进化变化可能比通常假设的更复杂。
大脑行为进化
更新日期:2020-07-31
down
wechat
bug