当前位置: X-MOL 学术J. Environ. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of floc properties of coagulation systems: effect of particle concentration, scale and mode of flocculation
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2020-07-31 , DOI: 10.1016/j.jece.2020.104311
Kanika Saxena , Urmila Brighu

This study is aimed to ascertain the influence of varying quantum of organic and inorganic colloids on parameters like floc size, fractal dimension and residual particle size, under alkaline conditions for water treatment by coagulation. Synthetic sample waters were prepared by using humic acid and kaolin for simulating organic matter and inorganic turbidity respectively. PACl (Poly aluminium chloride) was used as a coagulant. Image analysis for floc size measurement and box-counting method for fractal dimension measurement has been used. A batch jar test reactor and two continuous flow pilot-scale reactors: 1. Conventional clariflocculator (CC) and 2. Sludge blanket clarifier (SBC) were studied to evaluate the effect of scale-up on floc properties. The pilot systems differed in the mode of flocculation, as CC used a mechanical impeller and SBC used hydraulic mode for flocculation. For CC, the trendlines indicated a decrease in the size of flocs with increasing organic concentration. The order of floc size was: SBC > jar test > CC. The average fractal dimension of flocs in jar test was 1.28 which was lesser than that in CC (1.51) indicating more filament-like structure of flocs in jar test. The floc sizes and fractal dimensions depended on the scale and mode of flocculation. The size of residual particles in the treated water was quite similar irrespective of the scale and mode of flocculation. However, the trends were opposite with increasing input TOC. For jar test, the residual particle sizes decreased and for pilot-scale, it increased with increasing input TOC.



中文翻译:

混凝系统絮凝特性的比较:颗粒浓度,絮凝程度和絮凝方式的影响

这项研究旨在确定在碱性条件下通过混凝处理水时,有机和无机胶体的量子数对絮凝度,分形维数和残留粒径等参数的影响。用腐殖酸和高岭土分别模拟有机物和无机浊度,制备了合成水。使用PACl(聚氯化铝)作为凝结剂。已经使用了用于絮凝物尺寸测量的图像分析和用于分形维数测量的盒计数方法。间歇式广口瓶试验反应器和两个连续流中试规模反应器:1.常规澄清池(CC)和2.污泥床澄清池(SBC)被研究以评估放大对絮凝性能的影响。试点系统的絮凝方式有所不同,因为CC使用机械叶轮,而SBC使用液压模式进行絮凝。对于CC而言,趋势线表明絮凝物的大小随着有机物浓度的增加而减小。絮状物的大小顺序为:SBC>广口瓶试验> CC。广口瓶试验中絮凝物的平均分形维数为1.28,比CC(1.51)小,表明广口瓶试验中絮凝物的丝状结构更多。絮凝物的大小和分形维数取决于絮凝的规模和方式。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。趋势线表明,絮凝物的尺寸随着有机物浓度的增加而减小。絮状物的大小顺序为:SBC>广口瓶试验> CC。广口瓶试验中絮凝物的平均分形维数为1.28,比CC(1.51)小,表明广口瓶试验中絮凝物的丝状结构更多。絮凝物的大小和分形维数取决于絮凝的规模和方式。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。趋势线表明,絮凝物的尺寸随着有机物浓度的增加而减小。絮状物的大小顺序为:SBC>广口瓶试验> CC。广口瓶试验中絮凝物的平均分形维数为1.28,比CC(1.51)小,表明广口瓶试验中絮凝物的丝状结构更多。絮凝物的大小和分形维数取决于絮凝的规模和方式。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。广口瓶试验中絮凝物的平均分形维数为1.28,比CC(1.51)小,表明广口瓶试验中絮凝物的丝状结构更多。絮凝物的大小和分形维数取决于絮凝的规模和方式。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。广口瓶试验中絮凝物的平均分形维数为1.28,比CC(1.51)小,表明广口瓶试验中絮凝物的丝状结构更多。絮凝物的大小和分形维数取决于絮凝的规模和方式。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。无论絮凝的规模和方式如何,处理后水中残留颗粒的大小都非常相似。但是,趋势随着输入TOC的增加而相反。对于广口瓶测试,残留颗粒尺寸减小,对于中试规模,残留颗粒尺寸随着输入TOC的增加而增加。

更新日期:2020-07-31
down
wechat
bug