当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of inertia variations for active vibration isolation systems
Precision Engineering ( IF 3.5 ) Pub Date : 2020-07-31 , DOI: 10.1016/j.precisioneng.2020.07.003
Jinsoo Choi , Kihyun Kim , Hyoyoung Kim , SeokWoo Lee

Microvibrations may affect the quality and yield of products in precision processes. Therefore, vibration control is essential for minimizing position errors and improving the quality of production. Conventional active vibration isolation systems (AVISs) do not consider the effect of inertia variation, such as the movement of the stage and manipulator, on the system. Variations in inertia are associated with rotational motion, and they require a change in the modeling of an AVIS. Owing to this change, the system may not be optimal and may become unstable because the gain value is close to the critical point of the system. This results in insufficient performance. To overcome these issues, in this study, active vibration isolation was evaluated with the aim of actively controlling an AVIS while considering the effect of inertia variation. The system used in this study consists of an adaptive linear quadratic Gaussian (LQG) controller with six degrees of freedom. The inertia of the entire system changes based on the position of a stage mover. This variation in inertia alters the model of the system. The model is updated using the LQG controller, and the performance of the controller is evaluated. The LQG controller is used to evaluate the followability and transmissibility of the AVIS. The feedback loop is analyzed using Nyquist plots to determine the correlation between inertia variation and robustness. As a result, the phase margin decreases to 40°or lower as the rate of inertia variation increases. When the model is updated, the Nyquist's path is included in the unit circle. The correlation between inertia variation and performance is analyzed using Bode plots. The correlation shows a difference of approximately 10 dB depending on whether the model is updated.



中文翻译:

主动隔振系统惯性变化的影响

微振动可能会影响精密工艺中产品的质量和产量。因此,振动控制对于最小化位置误差和提高生产质量至关重要。传统的主动隔振系统(AVIS)并未考虑惯性变化(例如平台和机械手的移动)对系统的影响。惯性的变化与旋转运动有关,它们需要改变AVIS的模型。由于这种变化,系统可能不是最佳的,并且可能会变得不稳定,因为增益值接近系统的临界点。这导致性能不足。为了克服这些问题,在本研究中,对主动隔振进行了评估,目的是在考虑惯性变化的影响的同时主动控制AVIS。本研究中使用的系统由具有六个自由度的自适应线性二次高斯(LQG)控制器组成。整个系统的惯性根据位移器的位置而变化。惯性的这种变化会改变系统的模型。使用LQG控制器更新模型,并评估控制器的性能。LQG控制器用于评估AVIS的跟随性和传递性。使用奈奎斯特图分析反馈环路,以确定惯性变化与鲁棒性之间的相关性。结果,相位裕度减小到 惯性的这种变化会改变系统的模型。使用LQG控制器更新模型,并评估控制器的性能。LQG控制器用于评估AVIS的跟随性和传递性。使用奈奎斯特图分析反馈环路,以确定惯性变化与鲁棒性之间的相关性。结果,相位裕度减小到 惯性的这种变化会改变系统的模型。使用LQG控制器更新模型,并评估控制器的性能。LQG控制器用于评估AVIS的跟随性和传递性。使用奈奎斯特图分析反馈环路,以确定惯性变化与鲁棒性之间的相关性。结果,相位裕度减小到40°或随着惯性变化率的增加而降低。更新模型后,奈奎斯特的路径将包含在单位圆中。使用伯德图分析惯性变化与性能之间的相关性。根据模型是否更新,相关性显示出大约10 dB的差异。

更新日期:2020-07-31
down
wechat
bug