当前位置: X-MOL 学术Intel. Serv. Robotics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heading angle estimation using rotating magnetometer for mobile robots under environmental magnetic disturbances
Intelligent Service Robotics ( IF 2.3 ) Pub Date : 2020-07-31 , DOI: 10.1007/s11370-020-00334-7
Feng Ye , Feng Shi , Yizong Lai , Xinjie Zhou , Kuo Li

The heading angle plays a vital role in the localization and mapping of mobile robots. It is generally obtained by fusing measurements from gyroscope and magnetometer. However, ferromagnetic objects in real-world environments will disturb the magnetic field and will, therefore, cause significant errors in the estimated heading angles. This work proposes a novel method that employs a rotating magnetometer to detect ambient spatial magnetic disturbances and corrects the heading angle. The algorithm is based on the extended Kalman filter (EKF). Firstly, a criterion named spatial disturbance index is defined to characterize the disturbance quantitatively. And then the magnetometer measurement error covariance of the EKF is tuned adaptively according to the proposed criterion, so that a relatively reliable heading angle can be obtained even under strong spatial dynamic magnetic disturbances. In addition, the estimated heading angle can quickly restore to the correct value when the spatial disturbances disappear. The proposed algorithm has the benefit of adjusting the fusing degree of gyroscope and magnetometer adaptively to reject spatial disturbances and avoid the adverse impact of inherent gyroscope drift. The algorithm is evaluated under static and dynamic conditions in real-world indoor/outdoor environments. The results show that our algorithm outperforms the conventional EKF with fixed measurement error covariance and also the algorithm using only gyroscope.



中文翻译:

环境电磁干扰下使用旋转磁力仪的移动机器人航向角估计

航向角在移动机器人的定位和地图绘制中起着至关重要的作用。它通常是通过将陀螺仪和磁力计的测量值融合而获得的。但是,现实世界中的铁磁物体会干扰磁场,因此会在估计的航向角上造成重大误差。这项工作提出了一种新颖的方法,该方法采用旋转磁力计来检测环境空间磁干扰并校正航向角。该算法基于扩展卡尔曼滤波器(EKF)。首先,定义了一个称为空间干扰指数的标准来定量地描述干扰。然后根据提出的准则自适应地调整EKF的磁力计测量误差协方差,因此即使在强烈的空间动态磁干扰下也可以获得相对可靠的航向角。另外,当空间干扰消失时,估计的航向角可以迅速恢复到正确的值。所提出的算法具有自适应地调节陀螺仪和磁力计的融合度的优点,以抑制空间干扰并避免固有陀螺仪漂移的不利影响。在真实的室内/室外环境下,在静态和动态条件下对算法进行评估。结果表明,在固定测量误差协方差的情况下,我们的算法优于传统的EKF算法,并且仅使用陀螺仪的算法效果优于传统的EKF。当空间干扰消失时,估计的航向角可以迅速恢复到正确的值。所提出的算法具有自适应地调节陀螺仪和磁力计的融合度的优点,以抑制空间干扰并避免固有陀螺仪漂移的不利影响。在真实的室内/室外环境下,在静态和动态条件下对算法进行评估。结果表明,在固定测量误差协方差的情况下,我们的算法优于传统的EKF算法,而且仅使用陀螺仪的算法也优于传统的EKF算法。当空间干扰消失时,估计的航向角可以迅速恢复到正确的值。所提出的算法具有自适应地调节陀螺仪和磁力计的融合度的优点,以抑制空间干扰并避免固有陀螺仪漂移的不利影响。在真实的室内/室外环境下,在静态和动态条件下对算法进行评估。结果表明,在固定测量误差协方差的情况下,我们的算法优于传统的EKF算法,而且仅使用陀螺仪的算法也优于传统的EKF算法。在真实的室内/室外环境下,在静态和动态条件下对算法进行评估。结果表明,在固定测量误差协方差的情况下,我们的算法优于传统的EKF算法,而且仅使用陀螺仪的算法也优于传统的EKF算法。在真实的室内/室外环境下,在静态和动态条件下对算法进行评估。结果表明,在固定测量误差协方差的情况下,我们的算法优于传统的EKF算法,而且仅使用陀螺仪的算法也优于传统的EKF算法。

更新日期:2020-07-31
down
wechat
bug