当前位置: X-MOL 学术Astron. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two Views of the Radius Gap and the Role of Light Curve Fitting
The Astronomical Journal ( IF 5.3 ) Pub Date : 2020-07-30 , DOI: 10.3847/1538-3881/ab9fff
Erik A. Petigura

Recently, several groups have resolved a gap that bifurcates planets between the size of Earth and Neptune into two populations. The location and depth of this feature is an important signature of the physical processes that form and sculpt planets. In particular, planets residing in the radius gap are valuable probes of these processes as they may be undergoing the final stages of envelope loss. Here, we discuss two views of the radius gap by Fulton & Petigura (2018; F18) and Van Eylen et al. (2018; V18). In V18, the gap is wider and more devoid of planets. This is due, in part, to V18's more precise measurements of planet radius $R_p$. Thanks to Gaia, uncertainties in stellar radii Rstar are no longer the limiting uncertainties in determining $R_p$ for the majority of Kepler planets; instead, errors in $R_p/R_\star$ dominate. V18's analysis incorporated short-cadence photometry along with constraints on mean stelar density that enabled more accurate determinations of $R_p/R_\star$. In the F18 analysis, less accurate $R_p/R_\star$ blurs the boundary the radius gap. The differences in $R_p/R_\star$ are largest at high impact parameter ($b \gtrsim 0.8$) and often exceed 10%. This motivates excluding high-$b$ planets from demographic studies, but identifying such planets from long-cadence photometry alone is challenging. We show that transit duration can serve as an effective proxy, and we leverage this information to enhance the contrast between the super-Earth and sub-Neptune populations.

中文翻译:

半径间隙的两种观点及光曲线拟合的作用

最近,几个小组解决了将地球和海王星大小之间的行星分成两个群体的差距。该特征的位置和深度是形成和塑造行星的物理过程的重要标志。特别是,位于半径间隙中的行星是这些过程的有价值的探测,因为它们可能正在经历包层丢失的最后阶段。在这里,我们讨论了 Fulton & Petigura (2018; F18) 和 Van Eylen 等人关于半径间隙的两种观点。(2018 年;V18)。在 V18 中,差距更大,更没有行星。这部分是由于 V18 对行星半径 $R_p$ 的更精确测量。多亏了盖亚,恒星半径 Rstar 的不确定性不再是确定大多数开普勒行星 $R_p$ 的限制性不确定性;相反,$R_p/R_\star$ 中的错误占主导地位。V18' s 分析结合了短节奏光度测量以及对平均恒星密度的限制,从而能够更准确地确定 $R_p/R_\star$。在 F18 分析中,不太准确的 $R_p/R_\star$ 模糊了半径间隙的边界。$R_p/R_\star$ 的差异在高影响参数 ($b \gtrsim 0.8$) 处最大,通常超过 10%。这促使从人口统计研究中排除高 $b$ 行星,但仅从长节奏光度测量中识别此类行星具有挑战性。我们表明过境持续时间可以作为一个有效的代理,我们利用这些信息来增强超级地球和亚海王星人口之间的对比。不太准确的 $R_p/R_\star$ 模糊了半径间隙的边界。$R_p/R_\star$ 的差异在高影响参数 ($b \gtrsim 0.8$) 处最大,通常超过 10%。这促使从人口统计研究中排除高 $b$ 行星,但仅从长节奏光度测量中识别此类行星具有挑战性。我们表明过境持续时间可以作为一个有效的代理,我们利用这些信息来增强超级地球和亚海王星人口之间的对比。不太准确的 $R_p/R_\star$ 模糊了半径间隙的边界。$R_p/R_\star$ 的差异在高影响参数 ($b \gtrsim 0.8$) 处最大,通常超过 10%。这促使从人口统计研究中排除高 $b$ 行星,但仅从长节奏光度测量中识别此类行星具有挑战性。我们表明过境持续时间可以作为一个有效的代理,我们利用这些信息来增强超级地球和亚海王星人口之间的对比。
更新日期:2020-07-30
down
wechat
bug