当前位置: X-MOL 学术Appl. Adhes. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis
Applied Adhesion Science Pub Date : 2020-07-29 , DOI: 10.1186/s40563-020-00128-1
Mohammed Alharbi , Ing Kong , Vipulkumar Ishvarbhai Patel

Accurate simulation of mechanical properties of 3D-printed objects can provide critical inputs to designers and manufacturers. Polylactic acid, a biodegradable polymer, is particularly important in this regard due to its excellent print quality and a wide range of applications. Herein, an accurate uniaxial stress–strain profile simulation of 3D-printed PLA is reported. Nonlinear Finite Element Analysis (FEA) was used to simulate the uniaxial tensile test and build a material model for the prediction of the stress–strain response. 3D model for this nonlinear FEA study was built in SolidWorks, and several measures were taken to simulate the nonlinear stress–strain response with high accuracy. Von Mises stress, resultant displacement, and strain plots were produced. Comparison with experimental data extracted from the literature was done to validate the FEA model. Fracture behavior was predicted by FEA stress distribution. Deviations between the stress–strain plot obtained by FEA from the experimentally obtained plot were minimal. The entire curve, except the failure zone, could be precisely simulated. Furthermore, the developed von Mises plasticity material model and the boundary conditions also captured the behavior of specimen under uniaxial tension load and the deviation between experimental results was minor. These results suggest that the developed material model could be useful in non-linear FEA studies on 3D printed PLA objects which are expected to withstand tensile stress.

中文翻译:

非线性有限元分析模拟3D打印聚乳酸的单轴应力-应变响应

精确模拟3D打印物体的机械性能可以为设计人员和制造商提供关键的输入。在这方面,聚乳酸是一种可生物降解的聚合物,由于其出色的印刷质量和广泛的应用,在这方面尤其重要。本文报道了3D打印PLA的精确单轴应力-应变曲线模拟。非线性有限元分析(FEA)用于模拟单轴拉伸试验,并建立用于预测应力-应变响应的材料模型。在SolidWorks中建立了用于此非线性FEA研究的3D模型,并采取了多种措施来高精度地模拟非线性应力-应变响应。产生了冯·米塞斯应力,最终位移和应变图。与从文献中提取的实验数据进行比较以验证FEA模型。通过FEA应力分布预测断裂行为。由FEA从实验获得的图获得的应力-应变图之间的偏差很小。除故障区域外,整个曲线都可以精确模拟。此外,已开发的冯·米塞斯塑性材料模型和边界条件也记录了单轴拉伸载荷下的试样行为,并且实验结果之间的偏差很小。这些结果表明,所开发的材料模型可能对预期可承受拉伸应力的3D打印PLA对象的非线性FEA研究有用。由FEA从实验获得的图获得的应力-应变图之间的偏差很小。除故障区域外,整个曲线都可以精确模拟。此外,已开发的冯·米塞斯塑性材料模型和边界条件也记录了单轴拉伸载荷下的试样行为,并且实验结果之间的偏差很小。这些结果表明,所开发的材料模型可能对预期可承受拉伸应力的3D打印PLA对象的非线性FEA研究有用。由FEA从实验获得的图获得的应力-应变图之间的偏差很小。除故障区域外,整个曲线都可以精确模拟。此外,已开发的冯·米塞斯塑性材料模型和边界条件也记录了单轴拉伸载荷下的试样行为,并且实验结果之间的偏差很小。这些结果表明,开发的材料模型可用于对预计可承受拉伸应力的3D打印PLA对象进行非线性FEA研究。建立的冯·米塞斯(von Mises)塑性材料模型和边界条件也记录了试样在单轴拉伸载荷下的行为,实验结果之间的偏差很小。这些结果表明,所开发的材料模型可能对预期可承受拉伸应力的3D打印PLA对象的非线性FEA研究有用。建立的冯·米塞斯(von Mises)塑性材料模型和边界条件也记录了试样在单轴拉伸载荷下的行为,实验结果之间的偏差很小。这些结果表明,开发的材料模型可用于对预计可承受拉伸应力的3D打印PLA对象进行非线性FEA研究。
更新日期:2020-07-29
down
wechat
bug