当前位置: X-MOL 学术ChemRxiv › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating Electrode Calendering and its Impact on Electrochemical Performance by Means of a New Discrete Element Method Model: Towards a Digital Twin of Li-Ion Battery Manufacturing
ChemRxiv Pub Date : 2020-07-30 , DOI: 10.26434/chemrxiv.12733064.v1
Alain Ngandjong , Teo Lombardo , Emiliano Primo , Mehdi Chouchane , Abbos Shodiev , Oier Arcelus , Alejandro A. Franco 1
Affiliation  

Lithium-ion battery (LIB) manufacturing optimization is crucial to reduce its CO2 fingerprint and cost, while improving their electrochemical performance. In this article, we present an experimentally validated calendering Discrete Element Method model for LiNi0.33Mn0.33Co0.33O2–based cathodes by considering explicitly both active material (AM) and carbon-binder domain (CBD). This model was coupled to a pre-existing Coarse-Grained Molecular Dynamics model describing the slurry equilibration and its drying and a 4D-resolved Finite Element Method model for predicting electrochemical performance. Our calendering model introduces important novelties versus the state of the art, such as the utilization of un-calendered electrode mesostructures resulting from validated simulations of the slurry and drying combined with the explicit consideration of the spatial distribution and interactions between AM and CBD particles, and its validation with both experimental micro-indentation and porosity vs. calendering pressure curves. The effect of calendering on the electrode mesostructure is analyzed in terms of pore size distribution, tortuosity and particles arrangement. In addition, the evolution of the macroscopic electrochemical behavior of the electrodes upon the degree of calendering is discussed, offering added insights into the links between the calendering pressure, the electrode mesostructure and its overall performance.


中文翻译:

通过新的离散元方法模型研究电极压延及其对电化学性能的影响:走向锂离子电池制造的数字孪生

锂离子电池(LIB)的制造优化对于降低其二氧化碳指纹和成本,同时提高其电化学性能至关重要。在本文中,我们通过明确考虑活性材料(AM)和碳粘合剂域(CBD),提出了一种基于LiNi0.33Mn0.33Co0.33O2的阴极的经过实验验证的压延离散元素方法模型。该模型与先前存在的粗粒化分子动力学模型(用于描述浆液平衡及其干燥)以及用于预测电化学性能的4D解析有限元模型耦合。我们的压光模型引入了重要的新颖性与最新技术的对比,例如利用经过验证的浆料和干燥模拟结果得到的未压延电极介观结构的利用,并明确考虑了AM和CBD颗粒之间的空间分布和相互作用,并通过实验微压痕和孔隙率与压延进行了验证压力曲线。从孔尺寸分布,曲折度和颗粒排列方面分析了压延对电极介观结构的影响。此外,还讨论了电极在压延度上的宏观电化学行为的演变,从而提供了对压延压力,电极介观结构及其整体性能之间联系的更多见解。并通过实验微压痕和孔隙率与压延压力曲线进行验证。从孔尺寸分布,曲折度和颗粒排列方面分析了压延对电极介观结构的影响。另外,还讨论了电极在压延度上的宏观电化学行为的演变,从而提供了对压延压力,电极介观结构及其整体性能之间联系的更多见解。并通过实验微压痕和孔隙率与压延压力曲线进行验证。从孔尺寸分布,曲折度和颗粒排列方面分析了压延对电极介观结构的影响。另外,还讨论了电极在压延度上的宏观电化学行为的演变,从而提供了对压延压力,电极介观结构及其整体性能之间联系的更多见解。
更新日期:2020-07-30
down
wechat
bug