当前位置: X-MOL 学术Energy Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical investigations of proppant pack effect on fracture conductivity of channel fracturing
Energy Science & Engineering ( IF 3.5 ) Pub Date : 2020-07-29 , DOI: 10.1002/ese3.791
Jianchun Guo 1 , Ruoyu Yang 1 , Tao Zhang 1 , Qianli Lu 1 , Kefan Mu 1
Affiliation  

Channel fracturing technology has been previously applied in the field; however, there are few studies on the shape and distribution pattern of the proppant pack and its effects on fracture conductivity. In this study, the shape and distribution of proppant packs in the channel fracturing process were studied by plate fracture experiments. Subsequently, proppant distribution geometry models were obtained based on a quantitative analysis of the experimental results. A conductivity calculation model was derived by the lattice Boltzmann method in order to investigate the proppant pack effect on fracture conductivity and optimize the distribution. Experimental results demonstrated that the shape and distribution of proppant packs were mainly controlled by the injection rate and pulse time, and four typical distribution types in the fracture were identified. Simulation results indicated that the flow resistance increased dramatically as the pillar‐fracture ratio (PFR) increased. However, fracture conductivity was also strongly related to the fracture width under closure pressure, in that the average width of the fracture decreased or closed completely as the PFR decreased. Under the same PFR at 50%, fracture conductivity was dominated by the distribution type, and the streamlined proppant packs yielded the highest conductivity. Finally, corresponding laboratory parameters intended for generating the streamlined packs were converted to field application, thereby proposing recommended pumping rates for different fracture heights and fracture widths.

中文翻译:

支撑剂充填对河道压裂裂缝导流率影响的实验与数值研究

通道压裂技术先前已在该领域中应用;但是,关于支撑剂充填物的形状和分布模式及其对裂缝传导率的影响的研究很少。在这项研究中,通过板断裂实验研究了通道破裂过程中支撑剂包装的形状和分布。随后,基于对实验结果的定量分析,获得了支撑剂分布几何模型。为了研究支撑剂充填对裂缝电导率的影响并优化其分布,通过格子玻尔兹曼方法推导了电导率计算模型。实验结果表明,支撑剂包装的形状和分布主要受注入速率和脉冲时间控制,确定了裂缝中的四种典型分布类型。仿真结果表明,流阻随着立柱断裂比(PFR)的增加而急剧增加。但是,在闭合压力下,裂缝的电导率也与裂缝的宽度密切相关,因为裂缝的平均宽度随着PFR的降低而减小或完全闭合。在相同的PFR(50%)下,断裂电导率受分布类型的支配,流线型支撑剂充填产生最高的电导率。最后,将旨在生成流线型包装的相应实验室参数转换为现场应用,从而针对不同的裂缝高度和裂缝宽度提出了建议的抽速。仿真结果表明,流阻随着立柱断裂比(PFR)的增加而急剧增加。但是,在闭合压力下,裂缝的电导率也与裂缝的宽度密切相关,因为裂缝的平均宽度随着PFR的降低而减小或完全闭合。在相同的PFR(50%)下,断裂电导率受分布类型的支配,流线型支撑剂充填产生最高的电导率。最后,将旨在生成流线型包装的相应实验室参数转换为现场应用,从而针对不同的裂缝高度和裂缝宽度提出了建议的抽速。仿真结果表明,流阻随着立柱断裂比(PFR)的增加而急剧增加。但是,在闭合压力下,裂缝的电导率也与裂缝的宽度密切相关,因为裂缝的平均宽度随着PFR的降低而减小或完全闭合。在相同的PFR(50%)下,断裂电导率受分布类型的支配,流线型支撑剂充填产生最高的电导率。最后,将旨在生成流线型包装的相应实验室参数转换为现场应用,从而针对不同的裂缝高度和裂缝宽度提出了建议的抽速。骨折的平均宽度随着PFR的降低而减小或完全闭合。在相同的PFR(50%)下,断裂电导率受分布类型的支配,流线型支撑剂充填产生最高的电导率。最后,将旨在生成流线型包装的相应实验室参数转换为现场应用,从而针对不同的裂缝高度和裂缝宽度提出了建议的抽速。骨折的平均宽度随着PFR的降低而减小或完全闭合。在相同的PFR(50%)下,断裂电导率受分布类型的支配,流线型支撑剂充填产生最高的电导率。最后,将旨在生成流线型包装的相应实验室参数转换为现场应用,从而针对不同的裂缝高度和裂缝宽度提出了建议的抽速。
更新日期:2020-07-29
down
wechat
bug