当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation on spray characteristics of aircraft kerosene with an external-mixing atomizer
Fuel Processing Technology ( IF 7.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.fuproc.2020.106531
Yuling Zhao , Xiaomin He , Mingyu Li , Kanghong Yao

Abstract A novel external-mixing atomizer capable of producing a non-conical spray was proposed and investigated in this work. The charge-coupled camera (CCD) and phase Doppler particle analyzer (PDPA) were used to study the macroscopic and microcosmic spray characteristics of the liquid aircraft kerosene, respectively. The spray angles from the front view (X-Z plane) and side view (Y-Z plane) were achieved. The results show that the spray angle of this external-mixing atomizer can be significantly different in the two perpendicular directions, but the discrepancy gradually decreases with the increase of the air flow rate. In addition, the distributions of Sauter mean diameter (SMD) and mean axial velocity component Umean at different downstream distances were plotted. The SMD distribution profiles shaped like a bowl with the maximum values occurring close to the boundary of the spray, while the mean axial velocity distribution profiles shaped like a hat with the maximum values occurring in the central region. Furthermore, the spray was divided into two regions according to the major atomization mechanism, including the outer region and central region. The droplet size and velocity in the outer region are mainly influenced by the fuel supply pressure, while in the central region are primarily affected by the air flow rate.

中文翻译:

外混雾化器飞机煤油喷雾特性试验研究

摘要 本文提出并研究了一种新型的可产生非锥形喷雾的外混式雾化器。分别采用电荷耦合相机(CCD)和相位多普勒粒子分析仪(PDPA)研究液态飞机煤油的宏观和微观喷雾特性。实现了前视图(XZ 平面)和侧视图(YZ 平面)的喷射角度。结果表明,这种外混式雾化器的喷雾角度在两个垂直方向上可以有显着差异,但随着空气流量的增加,差异逐渐减小。此外,还绘制了索特平均直径(SMD)和平均轴向速度分量 Umean 在不同下游距离的分布。SMD 分布曲线形状像碗状,最大值出现在喷雾边界附近,而平均轴向速度分布曲线形状像帽子,最大值出现在中心区域。此外,喷雾根据主要雾化机制分为两个区域,包括外部区域和中心区域。外侧区域的液滴尺寸和速度主要受供油压力的影响,而中央区域则主要受空气流速的影响。包括外围区域和中心区域。外侧区域的液滴尺寸和速度主要受供油压力的影响,而中央区域则主要受空气流速的影响。包括外围区域和中心区域。外侧区域的液滴尺寸和速度主要受供油压力的影响,而中央区域则主要受空气流速的影响。
更新日期:2020-12-01
down
wechat
bug