当前位置: X-MOL 学术Comput. Methods Programs Biomed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A biomechanical study on the laminate stacking sequence in composite bone plates for vancouver femur B1 fracture fixation.
Computer Methods and Programs in Biomedicine ( IF 4.9 ) Pub Date : 2020-07-30 , DOI: 10.1016/j.cmpb.2020.105680
Raja Dhason 1 , Sandipan Roy 1 , Shubhabrata Datta 1
Affiliation  

Background and objectives

Composite bone plates are proposed for fracture fixation in periprosthetic femoral fracture. Metallic plates, having high stiffness compared to bone lead to stress shielding, reduce the compression force in the fracture site, affectthe healing process. Reduction of stiffness in the axial direction due to above reason without lowering the stiffness in transverse to avoid much of shear strain and thus avoiding instability at the fracture site leads to selective stress shielding. This can only be achieved through meticulously designed fiber reinforced composite. In the present work varied fiber orientations in the stacked laminates with varied fiber types are employed in a post-operative femur fixation for the in-silico analyses of their effectiveness using finite element analysis.

Methods

In this study a Total Hip Arthroplasty (THA) model is constructed with composite bone plates. Three-dimensional narrow type metal plate is modeled with 12 holes and length of 194 mm. Three different types of composite bone plates are modeled with 12 holes of different size for the analysis i.e. Type 1 (5.6 mm thickness and 16 mm width), Type 2 (6 mm thickness and 16 mm width) and Type 3(6 mm thickness and 18 mm width). Anatomical 3D FE models of THA with composite bone plates are constructed to find out the interfacial stresses and strains. The finite element software ANSYS is used to perform the analysis.

Results

A three-dimensional FE model of immediately post-operative femur fixation is developed and studied the maximum stress distribution, strain and movement in axial/shear direction in the metal and composite bone plate near to the fracture site. In the present study, the metal and composite plate (carbon/epoxy, glass/epoxy and flax/epoxy) used for most common Vancouver type B1 fracture to observe the biomechanical behavior of different models in IPO condition using FEA.

Conclusions

Optimizing the fiber orientations of composite bone plates of Total Hip Arthroplasty (THA) model by controlling the biomechanical stresses could be a favorable approach. The finite element analysis approach gives a viable solution to design the composite bone plate and for designing future models that preserves the biomechanical function of THA with composite bone plate.



中文翻译:

复合材料叠层板在温哥华股骨B1骨折固定中的生物力学研究。

背景和目标

提出了复合骨板用于股骨假体周围骨折的骨折固定。与骨头相比具有较高刚度的金属板导致应力屏蔽,减小了骨折部位的压力,影响了愈合过程。由于上述原因,在轴向方向上的刚度降低而不降低横向刚度以避免很大的剪切应变,从而避免了在断裂部位的不稳定性,从而导致了选择性的应力屏蔽。这只能通过精心设计的纤维增强复合材料来实现。在当前工作中,在股骨术后固定中采用具有不同纤维类型的堆叠层压材料中的不同纤维取向,以进行有限元分析的有效性的计算机内分析。

方法

在这项研究中,使用复合骨板构建全髋关节置换术(THA)模型。三维窄型金属板的模型为12个孔,长度为194 mm。三种不同类型的复合骨板具有12个不同大小的孔以进行分析,即类型1(厚度为5.6毫米,宽度为16毫米),类型2(厚度为6毫米,宽度为16毫米)和类型3(厚度为6毫米,宽度为16毫米)。 18毫米宽)。构建具有复合骨板的THA的解剖3D FE模型,以找出界面应力和应变。有限元软件ANSYS用于执行分析。

结果

建立了三维股骨固定术后三维有限元模型,并研究了骨折部位附近的金属和复合骨板的最大应力分布,应变和轴向/剪切方向的运动。在本研究中,金属和复合材料板(碳/环氧树脂,玻璃/环氧树脂和亚麻/环氧树脂)用于最常见的温哥华B1型骨折,使用FEA观察IPO条件下不同模型的生物力学行为。

结论

通过控制生物力学应力来优化全髋关节置换术(THA)模型的复合骨板的纤维方向可能是一种不错的方法。有限元分析方法为设计复合骨板和设计将来的模型提供了可行的解决方案,该模型保留了复合骨板THA的生物力学功能。

更新日期:2020-07-30
down
wechat
bug