当前位置: X-MOL 学术Med. Biol. Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Haar wavelet transform-based optimal Bayesian method for medical image fusion.
Medical & Biological Engineering & Computing ( IF 3.2 ) Pub Date : 2020-07-30 , DOI: 10.1007/s11517-020-02209-6
Jayant Bhardwaj 1, 2 , Abhijit Nayak 2
Affiliation  

Image fusion (IF) attracts the researchers in the areas of the medical industry as valuable information could be afforded through the fusion of images that enable the clinical decisions to remain effective. With the aim to render an effective image fusion, this paper concentrates on the Bayesian fusion approach, which is tuned optimally using the proposed Fractional Bird Swarm Optimization (Fractional-BSA). The medical image fusion is progressed using the MRI brain image taken from the BRATS database, and the source images of multimodalities are fused effectively to present an information-rich fused image. The source images are subjected to the Haar wavelet transform, and the Bayesian fusion is performed using the Bayesian parameter, which is determined optimally using the proposed Fractional-BSA optimization. The proposed optimization is the integration of the fractional theory in the standard Bird Swarm Optimization (BSA), which improves the effectiveness of image fusion. Unlike any other existing methods, the proposed Fractional-BSA-based Bayesian Fusion approach renders a good quality and complex-free fusion experience. The analysis reveals that the method outperformed the existing methods with maximal mutual information, maximal peak signal-to-noise ratio (PSNR), minimal root mean square error (RMSE) of 1.5665, 44.0857 dB, and 5.4840, respectively.

Schematic diagram of medical image fusion

Medical IF is the significant research domain, which affords the fused image in such a way that this image carries a greater availability of the information content regarding any scene than the information carried by the single source image. Moreover, the concept of fusing multimodality enhances the contents in the image, which increases the reliability and overall information of the image. Thus, the efficient representation of the input data is made through the medical IF such that the physicians are assisted with a wide range of data for effective decision-making. Thus, the paper deals with the medical IF based on the Bayesian fusion approach for which the variable modalities of the image are used. The input image considered is the MRI brain image with four modalities, Flair, T2, T1, and T1C. Among the four modalities, any of the two modalities are considered the source images for fusion. The first step in IF is the generation of the wavelet coefficients, low–low (LL), high–low (HL), low–high (LH), and high–high (HH) using the Haar wavelet transform. Upon deriving the wavelet coefficients, the wavelets are fused based on the Bayesian fusion, which is progressed based on the proposed Fractional-BSA. Once the fused bands are formed, the inverse Haar wavelet transform generates the fused image, and it is significant to note that the IF is performed at the pixel level in such a way that the image quality is assured with a high level of the information for clinical applications. The advantages of the pixel-level fusion are regarding the original measured quantities, which involve directly in the fusion process.



中文翻译:

基于Haar小波变换的医学图像融合最优贝叶斯方法。

图像融合(IF)吸引了医学领域的研究人员,因为可以通过融合图像来提供有价值的信息,从而使临床决策保持有效。为了提供有效的图像融合,本文着重介绍了贝叶斯融合方法,该方法使用建议的分数鸟群优化(Fractional-BSA)进行了优化。使用从BRATS数据库获取的MRI脑图像来进行医学图像融合,并有效融合多模态的源图像以呈现信息丰富的融合图像。对源图像进行Haar小波变换,并使用贝叶斯参数执行贝叶斯融合,贝叶斯参数是使用建议的Fractional-BSA优化方法最佳确定的。提出的优化方法是将分数理论与标准Bird Swarm Optimization(BSA)集成在一起,从而提高了图像融合的有效性。与其他任何现有方法不同,所提出的基于分数-BSA的贝叶斯融合方法可提供良好的质量和无复杂的融合体验。分析表明,该方法在最大互信息,最大峰信噪比(PSNR),最小均方根误差(RMSE)分别为1.5665、44.0857 dB和5.4840方面优于现有方法。

医学图像融合示意图

医学IF是一个重要的研究领域,它以这样的方式提供融合图像:与单个源图像所承载的信息相比,该图像承载有关任何场景的信息内容的可用性更高。此外,融合多模态的概念增强了图像中的内容,从而增加了图像的可靠性和整体信息。因此,输入数据的有效表示是通过医疗IF进行的,从而为医生提供了广泛的数据以进行有效的决策。因此,本文基于贝叶斯融合方法处理医学中频,其中使用了图像的可变模态。所考虑的输入图像是具有四种模态的MRI脑图像,即Flair,T2,T1和T1C。在四种方式中,两种模态中的任何一种均被视为融合源图像。IF的第一步是使用Haar小波变换生成小波系数,低-低(LL),高-低(HL),低-高(LH)和高-高(HH)。推导小波系数后,基于贝叶斯融合对小波进行融合,贝叶斯融合基于提出的Fractional-BSA进行。一旦形成了融合带,Haar逆小波变换就生成了融合图像,值得注意的是,IF是在像素级执行的,以确保图像质量的高水平信息临床应用。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。IF的第一步是使用Haar小波变换生成小波系数,低-低(LL),高-低(HL),低-高(LH)和高-高(HH)。推导小波系数后,基于贝叶斯融合对小波进行融合,贝叶斯融合基于提出的Fractional-BSA进行。一旦形成了融合带,Haar逆小波变换就生成了融合图像,值得注意的是,IF是在像素级执行的,以确保图像质量的高水平信息临床应用。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。IF的第一步是使用Haar小波变换生成小波系数,低-低(LL),高-低(HL),低-高(LH)和高-高(HH)。推导小波系数后,基于贝叶斯融合对小波进行融合,贝叶斯融合基于提出的Fractional-BSA进行。一旦形成了融合带,Haar逆小波变换就生成了融合图像,值得注意的是,IF是在像素级执行的,以确保图像质量的高水平信息临床应用。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。和使用Haar小波变换的高-高(HH)。推导小波系数后,基于贝叶斯融合对小波进行融合,贝叶斯融合基于提出的Fractional-BSA进行。一旦形成了融合带,Haar逆小波变换就生成了融合图像,值得注意的是,IF是在像素级执行的,以确保图像质量的高水平信息临床应用。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。和使用Haar小波变换的高-高(HH)。推导小波系数后,基于贝叶斯融合对小波进行融合,贝叶斯融合基于提出的Fractional-BSA进行。一旦形成了融合带,Haar逆小波变换就生成了融合图像,值得注意的是,IF是在像素级执行的,以确保图像质量的高水平信息临床应用。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。Haar小波逆变换会生成融合图像,值得注意的是,IF是在像素级执行的,因此可以确保为临床应用提供高水平的信息,从而确保图像质量。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。Haar小波逆变换会生成融合图像,值得注意的是,IF是在像素级执行的,因此可以确保为临床应用提供高水平的信息,从而确保图像质量。像素级融合的优势在于原始测量值,而原始测量值直接参与融合过程。

更新日期:2020-07-30
down
wechat
bug