当前位置: X-MOL 学术J. Nondestruct. Eval. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using Interpolation with Nonlocal Autoregressive Modeling for Defect Detection in Welded Objects
Journal of Nondestructive Evaluation ( IF 2.8 ) Pub Date : 2020-07-30 , DOI: 10.1007/s10921-020-00704-2
Amir Movafeghi , Mahdi Mirzapour , Effat Yahaghi

X-rays and gamma rays are used in industrial radiography to detect internal defects and different structures of the test object. The radiography interpreters must be able to evaluate and interpret the radiography images as accurately as possible. To improve the operator’s image perception and interpretation, the quality of radiographs can be enhanced by different image processing methods. In this study, the sparse representation method with a nonlocal autoregressive model (NAM) based on a sparse representation model (SRM) algorithm was implemented to improve the defect detection capabilities. The technique relies on generating a regularized and smoothed image, which is then subtracted from the original image to reconstruct the high contrast image. The algorithm was successfully applied to different radiography images. Improved defect detection was achieved while preserving the fine details and the main information of the images. For the enhanced images of samples in this study, figures of merits were found between 83 and 98% for the different defects and regions of interests in the reconstructed radiographs by the NAM–SRM algorithms. These figures of merit were between 67 and 89% in the original radiographs, respectively. The results show that the reconstructed images by NARM–SRM algorithms have better visualization and also the defect regions are very clear to the original radiographs. Regarding computing time, the proposed method is faster than the other four chosen iterative methods.

中文翻译:

使用插值和非局部自回归建模进行焊接物体的缺陷检测

X 射线和伽马射线用于工业射线照相,以检测测试对象的内部缺陷和不同结构。射线照相解释员必须能够尽可能准确地评估和解释射线照相图像。为了提高操作者的图像感知和解释能力,可以通过不同的图像处理方法来提高射线照片的质量。在本研究中,基于稀疏表示模型 (SRM) 算法的非局部自回归模型 (NAM) 的稀疏表示方法被实现,以提高缺陷检测能力。该技术依赖于生成正则化和平滑的图像,然后从原始图像中减去该图像以重建高对比度图像。该算法已成功应用于不同的射线照相图像。改进了缺陷检测,同时保留了图像的精细细节和主要信息。对于本研究中样品的增强图像,NAM-SRM 算法重建的射线照片中不同缺陷和感兴趣区域的品质因数在 83% 到 98% 之间。在原始射线照片中,这些品质因数分别在 67% 和 89% 之间。结果表明,通过 NARM-SRM 算法重建的图像具有更好的可视化性,并且缺陷区域对于原始射线照片非常清晰。关于计算时间,所提出的方法比其他四种选择的迭代方法更快。NAM-SRM 算法重建的射线照片中不同缺陷和感兴趣区域的品质因数在 83% 到 98% 之间。在原始射线照片中,这些品质因数分别在 67% 和 89% 之间。结果表明,通过 NARM-SRM 算法重建的图像具有更好的可视化性,并且缺陷区域对于原始射线照片非常清晰。关于计算时间,所提出的方法比其他四种选择的迭代方法更快。NAM-SRM 算法重建的射线照片中不同缺陷和感兴趣区域的品质因数在 83% 到 98% 之间。在原始射线照片中,这些品质因数分别在 67% 和 89% 之间。结果表明,通过 NARM-SRM 算法重建的图像具有更好的可视化性,并且缺陷区域对于原始射线照片非常清晰。关于计算时间,所提出的方法比其他四种选择的迭代方法更快。结果表明,通过 NARM-SRM 算法重建的图像具有更好的可视化性,并且缺陷区域对于原始射线照片非常清晰。关于计算时间,所提出的方法比其他四种选择的迭代方法更快。结果表明,通过 NARM-SRM 算法重建的图像具有更好的可视化性,并且缺陷区域对于原始射线照片非常清晰。关于计算时间,所提出的方法比其他四种选择的迭代方法更快。
更新日期:2020-07-30
down
wechat
bug