当前位置: X-MOL 学术J. Mol. Hist. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The anticonvulsant effect of sparteine on pentylenetetrazole-induced seizures in rats: a behavioral, electroencephalographic, morphological and molecular study.
Journal of Molecular Histology ( IF 2.9 ) Pub Date : 2020-07-29 , DOI: 10.1007/s10735-020-09899-0
Fridha Villalpando-Vargas 1 , Laura Medina-Ceja 1 , Anne Santerre 2 , Edgar A Enciso-Madero 1
Affiliation  

Abnormal synchronous activity in neurons generates epileptic seizures. Antiepileptic drugs (AEDs) are effective in 70% of patients, but this percentage is drastically lower in developing countries. Sparteine is a quinolizidine alkaloid synthesized from most Lupine species and has a probable anticonvulsive effect. For this reason, the objective of the present work was to study the anticonvulsant effect of sparteine using a dose–effect curve and to determine its effectiveness against seizures using behavioral, electroencephalographic, morphological and molecular data. Wistar rats were grouped into control [saline solution (0.9%), pentylenetetrazole (90 mg/kg), and sparteine (13, 20 and 30 mg/kg), intraperitoneal (i.p.)] and experimental (sparteine + pentylenetetrazole) groups. The rats were implanted with surface electrodes to register electrical activity, and convulsive behavior was evaluated according to Velisek’s scale. The rats were perfused to obtain brain slices for cresyl violet staining and cellular density quantification as well as for immunohistochemistry for NeuN and GFAP. Other animals were used to determine the hippocampal mRNA expression of the M2 and M4 acetylcholine receptors by qPCR. Sparteine exhibited a better anticonvulsant effect at a dose of 30 mg/kg (i.p.) than at the other doses used. This anticonvulsant effect was characterized by a decrease in the severity of convulsive behavior, 100% survival, an inhibitory effect on epileptiform activity 75 min after pentylenetetrazole administration, and the conservation of the cellular layers of CA1, CA3 and the dentate gyrus (DG); however, astrogliosis was observed after 30 mg/kg sparteine treatment. In addition, sparteine treatment increased the mRNA expression of the M4 receptor three hours after administration. According to our findings, the effective dose of sparteine as an anticonvulsant agent by i.p. injection is 30 mg/kg. The astrogliosis that was observed after sparteine administration may be a compensatory mechanism to diminish excitability and maintain neuronal homeostasis, possibly through redistributing potassium and glutamate. The increase in the mRNA expression of the M4 receptor may suggest the participation of the M4 receptor in the anticonvulsive effect of sparteine, as the activation of this receptor may inhibit acetylcholine release and facilitate the subsequent release of GABA. However, the precise mechanisms by which sparteine produces these effects are not known, and therefore, further experiments are necessary.

更新日期:2020-07-30
down
wechat
bug