当前位置: X-MOL 学术Comput. Methods Funct. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generalization of Pólya’s Zero Distribution Theory for Exponential Polynomials, and Sharp Results for Asymptotic Growth
Computational Methods and Function Theory ( IF 0.6 ) Pub Date : 2020-07-30 , DOI: 10.1007/s40315-020-00336-7
Janne M. Heittokangas , Zhi-Tao Wen

An exponential polynomial of order q is an entire function of the form

$$\begin{aligned} f(z)=P_1(z)e^{Q_1(z)}+\cdots +P_k(z)e^{Q_k(z)}, \end{aligned}$$

where the coefficients \(P_j(z),Q_j(z)\) are polynomials in z such that

$$\begin{aligned} \max \{\deg (Q_j)\}=q. \end{aligned}$$

In 1977 Steinmetz proved that the zeros of f lying outside of finitely many logarithmic strips around so called critical rays have exponent of convergence \(\le q-1\). This result does not say anything about the zero distribution of f in each individual logarithmic strip. Here, it is shown that the asymptotic growth of the non-integrated counting function of zeros of f is asymptotically comparable to \(r^q\) in each logarithmic strip. The result generalizes the first order results by Pólya and Schwengeler from the 1920’s, and it shows, among other things, that the critical rays of f are precisely the Borel directions of order q of f. The error terms in the asymptotic equations for T(rf) and N(r, 1/f) originally due to Steinmetz are also improved.



中文翻译:

指数多项式的Pólya零分布理论的推广和渐近增长的尖锐结果

q阶的指数多项式是形式的完整函数

$$ \ begin {aligned} f(z)= P_1(z)e ^ {Q_1(z)} + \ cdots + P_k(z)e ^ {Q_k(z)},\ end {aligned} $$

其中系数\(P_j(z),Q_j(z)\)z中的多项式,使得

$$ \ begin {aligned} \ max \ {\ deg(Q_j)\} = q。\ end {aligned} $$

1977年Steinmetz证明,位于所谓的临界射线周围有限对数条带外的f的零点具有收敛指数\(\ le q-1 \)。这个结果没有说出每个对数带中f的零分布。在这里,表明在每个对数带中,f的零的非积分计数函数的渐近增长与\(r ^ q \)渐近可比。该结果概括了Pólya和Schwengeler从1920年代起的一阶结果,并且除其他外,它表明f的临界射线恰好是f的q阶的Borel方向。。最初由于Steinmetz引起的Tr,  f)和Nr,1 / f)渐近方程中的误差项也得到了改善。

更新日期:2020-07-30
down
wechat
bug