当前位置: X-MOL 学术Acta Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a Kirchhoff Singular p ( x ) $p(x)$ -Biharmonic Problem with Navier Boundary Conditions
Acta Applicandae Mathematicae ( IF 1.2 ) Pub Date : 2020-07-30 , DOI: 10.1007/s10440-020-00352-8
Khaled Kefi , Kamel Saoudi , Mohammed Mosa Al-Shomrani

The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular Kirchhoff problem involving the \(p(x)\)-biharmonic operator:

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} M(t)\Big(\Delta ^{2}_{p(x)}u+a(x)|u|^{p(x)-2}u\Big) =g(x)u^{-\gamma (x)} \mp \lambda f(x,u),\quad \mbox{in }\Omega , \\ \Delta u=u=0, \quad \mbox{on }\partial \Omega , \end{array}\displaystyle \right . \end{aligned}$$

where \(\Omega \subset {\mathbb{R}}^{N}\), \((N\geq 3)\) be a bounded domain with \(C^{2}\) boundary, \(\lambda \) is a positive parameter, \(\gamma : \overline{\Omega }\longrightarrow (0,1)\) be a continuous function, \(p\in C(\overline{\Omega })\) with \(\displaystyle 1< p^{-}:=\inf _{x\in \Omega }p(x)\leq p^{+}:=\sup _{x \in \Omega }p(x)<\frac{N}{2}\), as usual, \(p^{*}(x)=\displaystyle \frac{N p(x)}{N-2p(x)}\), \(g \in L^{\frac{p^{*}(x)}{p^{*}(x)+\gamma (x)-1}}(\Omega )\). We assume that \(M(t)\) is a continuous function with

$$ t:=\int _{\Omega }\frac{1}{p(x)}(|\Delta u|^{p(x)}+a(x)|u|^{p(x)})dx, $$

and assumed to verify assertions (M1)-(M3) in Sect. 3, moreover \(f(x,u)\) are assumed to satisfy assumptions (f1)-(f6). In the proofs of our results we use variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces.



中文翻译:

关于Kirchhoff奇异p(x)$ p(x)$-具有Navier边界条件的双调和问题

本文的目的是研究以下涉及\(p(x)\)-双调和算子的非齐奇奇异Kirchhoff问题的解的存在性:

$$ \ begin {aligned} \ left \ {\ textstyle \ begin {array} {l} M(t)\ Big(\ Delta ^ {2} _ {p(x)} u + a(x)| u | ^ {p(x)-2} u \ Big)= g(x)u ^ {-\ gamma(x)} \ mp \ lambda f(x,u),\ quad \ mbox {in} \ Omega,\ \ \ Delta u = u = 0,\ quad \ mbox {on} \ partial \ Omega,\ end {array} \ displaystyle \ right。\ end {aligned} $$

其中\(\ Omega \ subset {\ mathbb {R}} ^ {N} \)\((N \ geq 3)\)是边界为\(C ^ {2} \)的有界域,\(\ lambda \)是一个正参数,\(\ gamma:\ overline {\ Omega} \ longrightarrow(0,1)\)是一个连续函数,\(p \ in C(\ overline {\ Omega})\\具有\(\ displaystyle 1 <p ^ {-}:= \ inf _ {x \ in \ Omega} p(x)\ leq p ^ {+}:= \ sup _ {x \ in \ Omega} p(x) <\ frac {N} {2} \),像往常一样,\(p ^ {*}(x)= \ displaystyle \ frac {N p(x)} {N-2p(x)} \)\( g \ in L ^ {\ frac {p ^ {*}(x)} {p ^ {*}(x)+ \ gamma(x)-1}}(\ Omega} \)。我们假设\(M(t)\)是具有

$$ t:= \ int _ {\ Omega} \ frac {1} {p(x)}(| \ Delta u | ^ {p(x)} + a(x)| u | ^ {p(x) })dx,$$

并假设要验证Sect中的断言(M1) - (M3)。此外,如图3所示,假定\(f(x,u)\)满足假设(f1) - (f6)。在我们的结果证明中,我们使用了变分技术和单调论证,并结合了广义Lebesgue Sobolev空间的理论。

更新日期:2020-07-30
down
wechat
bug